Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
|- N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) |
2 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
3 |
|
lgsdir2lem3 |
|- ( ( P e. ZZ /\ -. 2 || P ) -> ( P mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) |
4 |
2 3
|
sylan |
|- ( ( P e. NN /\ -. 2 || P ) -> ( P mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) |
5 |
|
elun |
|- ( ( P mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> ( ( P mod 8 ) e. { 1 , 7 } \/ ( P mod 8 ) e. { 3 , 5 } ) ) |
6 |
|
ovex |
|- ( P mod 8 ) e. _V |
7 |
6
|
elpr |
|- ( ( P mod 8 ) e. { 1 , 7 } <-> ( ( P mod 8 ) = 1 \/ ( P mod 8 ) = 7 ) ) |
8 |
1
|
2lgslem3a1 |
|- ( ( P e. NN /\ ( P mod 8 ) = 1 ) -> ( N mod 2 ) = 0 ) |
9 |
8
|
a1d |
|- ( ( P e. NN /\ ( P mod 8 ) = 1 ) -> ( -. 2 || P -> ( N mod 2 ) = 0 ) ) |
10 |
9
|
expcom |
|- ( ( P mod 8 ) = 1 -> ( P e. NN -> ( -. 2 || P -> ( N mod 2 ) = 0 ) ) ) |
11 |
10
|
impd |
|- ( ( P mod 8 ) = 1 -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = 0 ) ) |
12 |
1
|
2lgslem3d1 |
|- ( ( P e. NN /\ ( P mod 8 ) = 7 ) -> ( N mod 2 ) = 0 ) |
13 |
12
|
a1d |
|- ( ( P e. NN /\ ( P mod 8 ) = 7 ) -> ( -. 2 || P -> ( N mod 2 ) = 0 ) ) |
14 |
13
|
expcom |
|- ( ( P mod 8 ) = 7 -> ( P e. NN -> ( -. 2 || P -> ( N mod 2 ) = 0 ) ) ) |
15 |
14
|
impd |
|- ( ( P mod 8 ) = 7 -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = 0 ) ) |
16 |
11 15
|
jaoi |
|- ( ( ( P mod 8 ) = 1 \/ ( P mod 8 ) = 7 ) -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = 0 ) ) |
17 |
7 16
|
sylbi |
|- ( ( P mod 8 ) e. { 1 , 7 } -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = 0 ) ) |
18 |
17
|
imp |
|- ( ( ( P mod 8 ) e. { 1 , 7 } /\ ( P e. NN /\ -. 2 || P ) ) -> ( N mod 2 ) = 0 ) |
19 |
|
iftrue |
|- ( ( P mod 8 ) e. { 1 , 7 } -> if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) = 0 ) |
20 |
19
|
adantr |
|- ( ( ( P mod 8 ) e. { 1 , 7 } /\ ( P e. NN /\ -. 2 || P ) ) -> if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) = 0 ) |
21 |
18 20
|
eqtr4d |
|- ( ( ( P mod 8 ) e. { 1 , 7 } /\ ( P e. NN /\ -. 2 || P ) ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) |
22 |
21
|
ex |
|- ( ( P mod 8 ) e. { 1 , 7 } -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
23 |
6
|
elpr |
|- ( ( P mod 8 ) e. { 3 , 5 } <-> ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) ) |
24 |
1
|
2lgslem3b1 |
|- ( ( P e. NN /\ ( P mod 8 ) = 3 ) -> ( N mod 2 ) = 1 ) |
25 |
24
|
expcom |
|- ( ( P mod 8 ) = 3 -> ( P e. NN -> ( N mod 2 ) = 1 ) ) |
26 |
1
|
2lgslem3c1 |
|- ( ( P e. NN /\ ( P mod 8 ) = 5 ) -> ( N mod 2 ) = 1 ) |
27 |
26
|
expcom |
|- ( ( P mod 8 ) = 5 -> ( P e. NN -> ( N mod 2 ) = 1 ) ) |
28 |
25 27
|
jaoi |
|- ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) -> ( P e. NN -> ( N mod 2 ) = 1 ) ) |
29 |
28
|
imp |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> ( N mod 2 ) = 1 ) |
30 |
|
1re |
|- 1 e. RR |
31 |
|
1lt3 |
|- 1 < 3 |
32 |
30 31
|
ltneii |
|- 1 =/= 3 |
33 |
32
|
nesymi |
|- -. 3 = 1 |
34 |
|
3re |
|- 3 e. RR |
35 |
|
3lt7 |
|- 3 < 7 |
36 |
34 35
|
ltneii |
|- 3 =/= 7 |
37 |
36
|
neii |
|- -. 3 = 7 |
38 |
33 37
|
pm3.2i |
|- ( -. 3 = 1 /\ -. 3 = 7 ) |
39 |
|
eqeq1 |
|- ( ( P mod 8 ) = 3 -> ( ( P mod 8 ) = 1 <-> 3 = 1 ) ) |
40 |
39
|
notbid |
|- ( ( P mod 8 ) = 3 -> ( -. ( P mod 8 ) = 1 <-> -. 3 = 1 ) ) |
41 |
|
eqeq1 |
|- ( ( P mod 8 ) = 3 -> ( ( P mod 8 ) = 7 <-> 3 = 7 ) ) |
42 |
41
|
notbid |
|- ( ( P mod 8 ) = 3 -> ( -. ( P mod 8 ) = 7 <-> -. 3 = 7 ) ) |
43 |
40 42
|
anbi12d |
|- ( ( P mod 8 ) = 3 -> ( ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) <-> ( -. 3 = 1 /\ -. 3 = 7 ) ) ) |
44 |
38 43
|
mpbiri |
|- ( ( P mod 8 ) = 3 -> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
45 |
|
1lt5 |
|- 1 < 5 |
46 |
30 45
|
ltneii |
|- 1 =/= 5 |
47 |
46
|
nesymi |
|- -. 5 = 1 |
48 |
|
5re |
|- 5 e. RR |
49 |
|
5lt7 |
|- 5 < 7 |
50 |
48 49
|
ltneii |
|- 5 =/= 7 |
51 |
50
|
neii |
|- -. 5 = 7 |
52 |
47 51
|
pm3.2i |
|- ( -. 5 = 1 /\ -. 5 = 7 ) |
53 |
|
eqeq1 |
|- ( ( P mod 8 ) = 5 -> ( ( P mod 8 ) = 1 <-> 5 = 1 ) ) |
54 |
53
|
notbid |
|- ( ( P mod 8 ) = 5 -> ( -. ( P mod 8 ) = 1 <-> -. 5 = 1 ) ) |
55 |
|
eqeq1 |
|- ( ( P mod 8 ) = 5 -> ( ( P mod 8 ) = 7 <-> 5 = 7 ) ) |
56 |
55
|
notbid |
|- ( ( P mod 8 ) = 5 -> ( -. ( P mod 8 ) = 7 <-> -. 5 = 7 ) ) |
57 |
54 56
|
anbi12d |
|- ( ( P mod 8 ) = 5 -> ( ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) <-> ( -. 5 = 1 /\ -. 5 = 7 ) ) ) |
58 |
52 57
|
mpbiri |
|- ( ( P mod 8 ) = 5 -> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
59 |
44 58
|
jaoi |
|- ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) -> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
60 |
59
|
adantr |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
61 |
|
ioran |
|- ( -. ( ( P mod 8 ) = 1 \/ ( P mod 8 ) = 7 ) <-> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
62 |
61 7
|
xchnxbir |
|- ( -. ( P mod 8 ) e. { 1 , 7 } <-> ( -. ( P mod 8 ) = 1 /\ -. ( P mod 8 ) = 7 ) ) |
63 |
60 62
|
sylibr |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> -. ( P mod 8 ) e. { 1 , 7 } ) |
64 |
63
|
iffalsed |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) = 1 ) |
65 |
29 64
|
eqtr4d |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) |
66 |
65
|
a1d |
|- ( ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) /\ P e. NN ) -> ( -. 2 || P -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
67 |
66
|
expimpd |
|- ( ( ( P mod 8 ) = 3 \/ ( P mod 8 ) = 5 ) -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
68 |
23 67
|
sylbi |
|- ( ( P mod 8 ) e. { 3 , 5 } -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
69 |
22 68
|
jaoi |
|- ( ( ( P mod 8 ) e. { 1 , 7 } \/ ( P mod 8 ) e. { 3 , 5 } ) -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
70 |
5 69
|
sylbi |
|- ( ( P mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) ) |
71 |
4 70
|
mpcom |
|- ( ( P e. NN /\ -. 2 || P ) -> ( N mod 2 ) = if ( ( P mod 8 ) e. { 1 , 7 } , 0 , 1 ) ) |