Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
|- N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) |
2 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
3 |
|
8nn |
|- 8 e. NN |
4 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
5 |
3 4
|
ax-mp |
|- 8 e. RR+ |
6 |
|
modmuladdnn0 |
|- ( ( P e. NN0 /\ 8 e. RR+ ) -> ( ( P mod 8 ) = 3 -> E. k e. NN0 P = ( ( k x. 8 ) + 3 ) ) ) |
7 |
2 5 6
|
sylancl |
|- ( P e. NN -> ( ( P mod 8 ) = 3 -> E. k e. NN0 P = ( ( k x. 8 ) + 3 ) ) ) |
8 |
|
simpr |
|- ( ( P e. NN /\ k e. NN0 ) -> k e. NN0 ) |
9 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
10 |
|
8cn |
|- 8 e. CC |
11 |
10
|
a1i |
|- ( k e. NN0 -> 8 e. CC ) |
12 |
9 11
|
mulcomd |
|- ( k e. NN0 -> ( k x. 8 ) = ( 8 x. k ) ) |
13 |
12
|
adantl |
|- ( ( P e. NN /\ k e. NN0 ) -> ( k x. 8 ) = ( 8 x. k ) ) |
14 |
13
|
oveq1d |
|- ( ( P e. NN /\ k e. NN0 ) -> ( ( k x. 8 ) + 3 ) = ( ( 8 x. k ) + 3 ) ) |
15 |
14
|
eqeq2d |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P = ( ( k x. 8 ) + 3 ) <-> P = ( ( 8 x. k ) + 3 ) ) ) |
16 |
15
|
biimpa |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> P = ( ( 8 x. k ) + 3 ) ) |
17 |
1
|
2lgslem3b |
|- ( ( k e. NN0 /\ P = ( ( 8 x. k ) + 3 ) ) -> N = ( ( 2 x. k ) + 1 ) ) |
18 |
8 16 17
|
syl2an2r |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> N = ( ( 2 x. k ) + 1 ) ) |
19 |
|
oveq1 |
|- ( N = ( ( 2 x. k ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. k ) + 1 ) mod 2 ) ) |
20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
21 |
|
eqidd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
22 |
|
2tp1odd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
23 |
20 21 22
|
syl2anc |
|- ( k e. NN0 -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
24 |
|
2z |
|- 2 e. ZZ |
25 |
24
|
a1i |
|- ( k e. NN0 -> 2 e. ZZ ) |
26 |
25 20
|
zmulcld |
|- ( k e. NN0 -> ( 2 x. k ) e. ZZ ) |
27 |
26
|
peano2zd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. ZZ ) |
28 |
|
mod2eq1n2dvds |
|- ( ( ( 2 x. k ) + 1 ) e. ZZ -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
29 |
27 28
|
syl |
|- ( k e. NN0 -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
30 |
23 29
|
mpbird |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 ) |
31 |
19 30
|
sylan9eqr |
|- ( ( k e. NN0 /\ N = ( ( 2 x. k ) + 1 ) ) -> ( N mod 2 ) = 1 ) |
32 |
8 18 31
|
syl2an2r |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> ( N mod 2 ) = 1 ) |
33 |
32
|
rexlimdva2 |
|- ( P e. NN -> ( E. k e. NN0 P = ( ( k x. 8 ) + 3 ) -> ( N mod 2 ) = 1 ) ) |
34 |
7 33
|
syld |
|- ( P e. NN -> ( ( P mod 8 ) = 3 -> ( N mod 2 ) = 1 ) ) |
35 |
34
|
imp |
|- ( ( P e. NN /\ ( P mod 8 ) = 3 ) -> ( N mod 2 ) = 1 ) |