| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgs2 |
|- ( 2 /L 2 ) = 0 |
| 2 |
1
|
eqeq1i |
|- ( ( 2 /L 2 ) = 1 <-> 0 = 1 ) |
| 3 |
|
0ne1 |
|- 0 =/= 1 |
| 4 |
3
|
neii |
|- -. 0 = 1 |
| 5 |
|
1ne2 |
|- 1 =/= 2 |
| 6 |
5
|
nesymi |
|- -. 2 = 1 |
| 7 |
|
2re |
|- 2 e. RR |
| 8 |
|
2lt7 |
|- 2 < 7 |
| 9 |
7 8
|
ltneii |
|- 2 =/= 7 |
| 10 |
9
|
neii |
|- -. 2 = 7 |
| 11 |
6 10
|
pm3.2ni |
|- -. ( 2 = 1 \/ 2 = 7 ) |
| 12 |
4 11
|
2false |
|- ( 0 = 1 <-> ( 2 = 1 \/ 2 = 7 ) ) |
| 13 |
|
8nn |
|- 8 e. NN |
| 14 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 15 |
13 14
|
ax-mp |
|- 8 e. RR+ |
| 16 |
|
0le2 |
|- 0 <_ 2 |
| 17 |
|
2lt8 |
|- 2 < 8 |
| 18 |
|
modid |
|- ( ( ( 2 e. RR /\ 8 e. RR+ ) /\ ( 0 <_ 2 /\ 2 < 8 ) ) -> ( 2 mod 8 ) = 2 ) |
| 19 |
7 15 16 17 18
|
mp4an |
|- ( 2 mod 8 ) = 2 |
| 20 |
19
|
eleq1i |
|- ( ( 2 mod 8 ) e. { 1 , 7 } <-> 2 e. { 1 , 7 } ) |
| 21 |
|
2ex |
|- 2 e. _V |
| 22 |
21
|
elpr |
|- ( 2 e. { 1 , 7 } <-> ( 2 = 1 \/ 2 = 7 ) ) |
| 23 |
20 22
|
bitr2i |
|- ( ( 2 = 1 \/ 2 = 7 ) <-> ( 2 mod 8 ) e. { 1 , 7 } ) |
| 24 |
2 12 23
|
3bitri |
|- ( ( 2 /L 2 ) = 1 <-> ( 2 mod 8 ) e. { 1 , 7 } ) |