Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
2 |
|
2lgs |
|- ( P e. Prime -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
3 |
1 2
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
4 |
|
simpl |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = 1 ) |
5 |
|
eqcom |
|- ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) |
6 |
5
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) ) |
7 |
|
nnoddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) |
8 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
9 |
8
|
anim1i |
|- ( ( P e. NN /\ -. 2 || P ) -> ( P e. ZZ /\ -. 2 || P ) ) |
10 |
7 9
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. ZZ /\ -. 2 || P ) ) |
11 |
|
sqoddm1div8z |
|- ( ( P e. ZZ /\ -. 2 || P ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
12 |
10 11
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
13 |
|
m1exp1 |
|- ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
14 |
12 13
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
15 |
|
2lgsoddprmlem4 |
|- ( ( P e. ZZ /\ -. 2 || P ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
16 |
10 15
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
17 |
6 14 16
|
3bitrd |
|- ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
18 |
17
|
biimparc |
|- ( ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
19 |
18
|
adantl |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
20 |
4 19
|
eqtrd |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
21 |
20
|
exp32 |
|- ( ( 2 /L P ) = 1 -> ( ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
22 |
|
2z |
|- 2 e. ZZ |
23 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
24 |
1 23
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
25 |
|
lgscl1 |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) |
26 |
22 24 25
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) |
27 |
|
ovex |
|- ( 2 /L P ) e. _V |
28 |
27
|
eltp |
|- ( ( 2 /L P ) e. { -u 1 , 0 , 1 } <-> ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) ) |
29 |
|
simpl |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = -u 1 ) |
30 |
16
|
notbid |
|- ( P e. ( Prime \ { 2 } ) -> ( -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> -. ( P mod 8 ) e. { 1 , 7 } ) ) |
31 |
30
|
biimpar |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) |
32 |
|
m1expo |
|- ( ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ /\ -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) |
33 |
12 31 32
|
syl2an2r |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) |
34 |
33
|
eqcomd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
35 |
34
|
adantl |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
36 |
29 35
|
eqtrd |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
37 |
36
|
a1d |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
38 |
37
|
exp32 |
|- ( ( 2 /L P ) = -u 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
39 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
40 |
|
simpr |
|- ( ( P e. Prime /\ P =/= 2 ) -> P =/= 2 ) |
41 |
40
|
necomd |
|- ( ( P e. Prime /\ P =/= 2 ) -> 2 =/= P ) |
42 |
39 41
|
sylbi |
|- ( P e. ( Prime \ { 2 } ) -> 2 =/= P ) |
43 |
|
2prm |
|- 2 e. Prime |
44 |
|
prmrp |
|- ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
45 |
43 1 44
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
46 |
42 45
|
mpbird |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 gcd P ) = 1 ) |
47 |
|
lgsne0 |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) |
48 |
22 24 47
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) |
49 |
46 48
|
mpbird |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) =/= 0 ) |
50 |
|
eqneqall |
|- ( ( 2 /L P ) = 0 -> ( ( 2 /L P ) =/= 0 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
51 |
49 50
|
syl5 |
|- ( ( 2 /L P ) = 0 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
52 |
|
pm2.24 |
|- ( ( 2 /L P ) = 1 -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
53 |
52
|
2a1d |
|- ( ( 2 /L P ) = 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
54 |
38 51 53
|
3jaoi |
|- ( ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
55 |
28 54
|
sylbi |
|- ( ( 2 /L P ) e. { -u 1 , 0 , 1 } -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
56 |
26 55
|
mpcom |
|- ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
57 |
56
|
com13 |
|- ( -. ( 2 /L P ) = 1 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
58 |
21 57
|
bija |
|- ( ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
59 |
3 58
|
mpcom |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |