| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
| 2 |
|
2lgs |
|- ( P e. Prime -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
| 3 |
1 2
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
| 4 |
|
simpl |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = 1 ) |
| 5 |
|
eqcom |
|- ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) |
| 6 |
5
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 ) ) |
| 7 |
|
nnoddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) |
| 8 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
| 9 |
8
|
anim1i |
|- ( ( P e. NN /\ -. 2 || P ) -> ( P e. ZZ /\ -. 2 || P ) ) |
| 10 |
7 9
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. ZZ /\ -. 2 || P ) ) |
| 11 |
|
sqoddm1div8z |
|- ( ( P e. ZZ /\ -. 2 || P ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
| 12 |
10 11
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ ) |
| 13 |
|
m1exp1 |
|- ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 14 |
12 13
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = 1 <-> 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 15 |
|
2lgsoddprmlem4 |
|- ( ( P e. ZZ /\ -. 2 || P ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
| 16 |
10 15
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
| 17 |
6 14 16
|
3bitrd |
|- ( P e. ( Prime \ { 2 } ) -> ( 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) <-> ( P mod 8 ) e. { 1 , 7 } ) ) |
| 18 |
17
|
biimparc |
|- ( ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 19 |
18
|
adantl |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 20 |
4 19
|
eqtrd |
|- ( ( ( 2 /L P ) = 1 /\ ( ( P mod 8 ) e. { 1 , 7 } /\ P e. ( Prime \ { 2 } ) ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 21 |
20
|
exp32 |
|- ( ( 2 /L P ) = 1 -> ( ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 24 |
1 23
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
| 25 |
|
lgscl1 |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) |
| 26 |
22 24 25
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) e. { -u 1 , 0 , 1 } ) |
| 27 |
|
ovex |
|- ( 2 /L P ) e. _V |
| 28 |
27
|
eltp |
|- ( ( 2 /L P ) e. { -u 1 , 0 , 1 } <-> ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) ) |
| 29 |
|
simpl |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = -u 1 ) |
| 30 |
16
|
notbid |
|- ( P e. ( Prime \ { 2 } ) -> ( -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) <-> -. ( P mod 8 ) e. { 1 , 7 } ) ) |
| 31 |
30
|
biimpar |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) |
| 32 |
|
m1expo |
|- ( ( ( ( ( P ^ 2 ) - 1 ) / 8 ) e. ZZ /\ -. 2 || ( ( ( P ^ 2 ) - 1 ) / 8 ) ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) |
| 33 |
12 31 32
|
syl2an2r |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) = -u 1 ) |
| 34 |
33
|
eqcomd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 35 |
34
|
adantl |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> -u 1 = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 36 |
29 35
|
eqtrd |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |
| 37 |
36
|
a1d |
|- ( ( ( 2 /L P ) = -u 1 /\ ( P e. ( Prime \ { 2 } ) /\ -. ( P mod 8 ) e. { 1 , 7 } ) ) -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 38 |
37
|
exp32 |
|- ( ( 2 /L P ) = -u 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 39 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 40 |
|
simpr |
|- ( ( P e. Prime /\ P =/= 2 ) -> P =/= 2 ) |
| 41 |
40
|
necomd |
|- ( ( P e. Prime /\ P =/= 2 ) -> 2 =/= P ) |
| 42 |
39 41
|
sylbi |
|- ( P e. ( Prime \ { 2 } ) -> 2 =/= P ) |
| 43 |
|
2prm |
|- 2 e. Prime |
| 44 |
|
prmrp |
|- ( ( 2 e. Prime /\ P e. Prime ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
| 45 |
43 1 44
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 gcd P ) = 1 <-> 2 =/= P ) ) |
| 46 |
42 45
|
mpbird |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 gcd P ) = 1 ) |
| 47 |
|
lgsne0 |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) |
| 48 |
22 24 47
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 /L P ) =/= 0 <-> ( 2 gcd P ) = 1 ) ) |
| 49 |
46 48
|
mpbird |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) =/= 0 ) |
| 50 |
|
eqneqall |
|- ( ( 2 /L P ) = 0 -> ( ( 2 /L P ) =/= 0 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 51 |
49 50
|
syl5 |
|- ( ( 2 /L P ) = 0 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 52 |
|
pm2.24 |
|- ( ( 2 /L P ) = 1 -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 53 |
52
|
2a1d |
|- ( ( 2 /L P ) = 1 -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 54 |
38 51 53
|
3jaoi |
|- ( ( ( 2 /L P ) = -u 1 \/ ( 2 /L P ) = 0 \/ ( 2 /L P ) = 1 ) -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 55 |
28 54
|
sylbi |
|- ( ( 2 /L P ) e. { -u 1 , 0 , 1 } -> ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) ) |
| 56 |
26 55
|
mpcom |
|- ( P e. ( Prime \ { 2 } ) -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( -. ( 2 /L P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
| 57 |
56
|
com13 |
|- ( -. ( 2 /L P ) = 1 -> ( -. ( P mod 8 ) e. { 1 , 7 } -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) ) |
| 58 |
21 57
|
bija |
|- ( ( ( 2 /L P ) = 1 <-> ( P mod 8 ) e. { 1 , 7 } ) -> ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 59 |
3 58
|
mpcom |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 /L P ) = ( -u 1 ^ ( ( ( P ^ 2 ) - 1 ) / 8 ) ) ) |