Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( N = ( ( 8 x. A ) + B ) -> ( N ^ 2 ) = ( ( ( 8 x. A ) + B ) ^ 2 ) ) |
2 |
1
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( N ^ 2 ) = ( ( ( 8 x. A ) + B ) ^ 2 ) ) |
3 |
2
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( N ^ 2 ) - 1 ) = ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) ) |
4 |
3
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) ) |
5 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
6 |
5
|
adantr |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. CC ) |
7 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
8 |
7
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
9 |
|
1cnd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> 1 e. CC ) |
10 |
|
8cn |
|- 8 e. CC |
11 |
|
8re |
|- 8 e. RR |
12 |
|
8pos |
|- 0 < 8 |
13 |
11 12
|
gt0ne0ii |
|- 8 =/= 0 |
14 |
10 13
|
pm3.2i |
|- ( 8 e. CC /\ 8 =/= 0 ) |
15 |
14
|
a1i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( 8 e. CC /\ 8 =/= 0 ) ) |
16 |
|
mulsubdivbinom2 |
|- ( ( ( A e. CC /\ B e. CC /\ 1 e. CC ) /\ ( 8 e. CC /\ 8 =/= 0 ) ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) |
17 |
6 8 9 15 16
|
syl31anc |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) |
18 |
17
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) |
19 |
4 18
|
eqtrd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) |