Step |
Hyp |
Ref |
Expression |
1 |
|
8nn |
|- 8 e. NN |
2 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
3 |
1 2
|
ax-mp |
|- 8 e. RR+ |
4 |
|
eqcom |
|- ( R = ( N mod 8 ) <-> ( N mod 8 ) = R ) |
5 |
|
modmuladdim |
|- ( ( N e. ZZ /\ 8 e. RR+ ) -> ( ( N mod 8 ) = R -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
6 |
4 5
|
syl5bi |
|- ( ( N e. ZZ /\ 8 e. RR+ ) -> ( R = ( N mod 8 ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
7 |
3 6
|
mpan2 |
|- ( N e. ZZ -> ( R = ( N mod 8 ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
8 |
7
|
imp |
|- ( ( N e. ZZ /\ R = ( N mod 8 ) ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) |
9 |
8
|
3adant2 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) |
10 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
11 |
|
8cn |
|- 8 e. CC |
12 |
11
|
a1i |
|- ( k e. ZZ -> 8 e. CC ) |
13 |
10 12
|
mulcomd |
|- ( k e. ZZ -> ( k x. 8 ) = ( 8 x. k ) ) |
14 |
13
|
adantl |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( k x. 8 ) = ( 8 x. k ) ) |
15 |
14
|
oveq1d |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( k x. 8 ) + R ) = ( ( 8 x. k ) + R ) ) |
16 |
15
|
eqeq2d |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( k x. 8 ) + R ) <-> N = ( ( 8 x. k ) + R ) ) ) |
17 |
|
simpr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> k e. ZZ ) |
18 |
17
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> k e. ZZ ) |
19 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
20 |
1
|
a1i |
|- ( N e. ZZ -> 8 e. NN ) |
21 |
19 20
|
zmodcld |
|- ( N e. ZZ -> ( N mod 8 ) e. NN0 ) |
22 |
21
|
nn0zd |
|- ( N e. ZZ -> ( N mod 8 ) e. ZZ ) |
23 |
22
|
3ad2ant1 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. ZZ ) |
24 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. ZZ <-> ( N mod 8 ) e. ZZ ) ) |
25 |
24
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. ZZ <-> ( N mod 8 ) e. ZZ ) ) |
26 |
23 25
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. ZZ ) |
27 |
26
|
adantr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> R e. ZZ ) |
28 |
27
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> R e. ZZ ) |
29 |
|
simpr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> N = ( ( 8 x. k ) + R ) ) |
30 |
|
2lgsoddprmlem1 |
|- ( ( k e. ZZ /\ R e. ZZ /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
31 |
18 28 29 30
|
syl3anc |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
32 |
31
|
breq2d |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
33 |
|
2z |
|- 2 e. ZZ |
34 |
|
simp1 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> N e. ZZ ) |
35 |
1
|
a1i |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> 8 e. NN ) |
36 |
34 35
|
zmodcld |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. NN0 ) |
37 |
36
|
nn0red |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. RR ) |
38 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. RR <-> ( N mod 8 ) e. RR ) ) |
39 |
38
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. RR <-> ( N mod 8 ) e. RR ) ) |
40 |
37 39
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. RR ) |
41 |
|
resqcl |
|- ( R e. RR -> ( R ^ 2 ) e. RR ) |
42 |
|
peano2rem |
|- ( ( R ^ 2 ) e. RR -> ( ( R ^ 2 ) - 1 ) e. RR ) |
43 |
41 42
|
syl |
|- ( R e. RR -> ( ( R ^ 2 ) - 1 ) e. RR ) |
44 |
|
8re |
|- 8 e. RR |
45 |
44
|
a1i |
|- ( R e. RR -> 8 e. RR ) |
46 |
|
8pos |
|- 0 < 8 |
47 |
44 46
|
gt0ne0ii |
|- 8 =/= 0 |
48 |
47
|
a1i |
|- ( R e. RR -> 8 =/= 0 ) |
49 |
43 45 48
|
redivcld |
|- ( R e. RR -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
50 |
40 49
|
syl |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
51 |
50
|
adantr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
52 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. NN0 <-> ( N mod 8 ) e. NN0 ) ) |
53 |
52
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. NN0 <-> ( N mod 8 ) e. NN0 ) ) |
54 |
36 53
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. NN0 ) |
55 |
|
nn0z |
|- ( R e. NN0 -> R e. ZZ ) |
56 |
1
|
nnzi |
|- 8 e. ZZ |
57 |
56
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 8 e. ZZ ) |
58 |
|
zsqcl |
|- ( k e. ZZ -> ( k ^ 2 ) e. ZZ ) |
59 |
58
|
adantl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k ^ 2 ) e. ZZ ) |
60 |
57 59
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) e. ZZ ) |
61 |
33
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 e. ZZ ) |
62 |
|
zmulcl |
|- ( ( k e. ZZ /\ R e. ZZ ) -> ( k x. R ) e. ZZ ) |
63 |
62
|
ancoms |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k x. R ) e. ZZ ) |
64 |
61 63
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 x. ( k x. R ) ) e. ZZ ) |
65 |
60 64
|
zaddcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ ) |
66 |
|
4z |
|- 4 e. ZZ |
67 |
66
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 4 e. ZZ ) |
68 |
67 59
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 4 x. ( k ^ 2 ) ) e. ZZ ) |
69 |
68 63
|
zaddcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) |
70 |
61 69
|
jca |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 e. ZZ /\ ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) ) |
71 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) -> 2 || ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
72 |
70 71
|
syl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
73 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
74 |
|
4cn |
|- 4 e. CC |
75 |
|
2cn |
|- 2 e. CC |
76 |
74 75
|
mulcomi |
|- ( 4 x. 2 ) = ( 2 x. 4 ) |
77 |
73 76
|
eqtr3i |
|- 8 = ( 2 x. 4 ) |
78 |
77
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 8 = ( 2 x. 4 ) ) |
79 |
78
|
oveq1d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) = ( ( 2 x. 4 ) x. ( k ^ 2 ) ) ) |
80 |
75
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 e. CC ) |
81 |
74
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 4 e. CC ) |
82 |
58
|
zcnd |
|- ( k e. ZZ -> ( k ^ 2 ) e. CC ) |
83 |
82
|
adantl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k ^ 2 ) e. CC ) |
84 |
80 81 83
|
mulassd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 2 x. 4 ) x. ( k ^ 2 ) ) = ( 2 x. ( 4 x. ( k ^ 2 ) ) ) ) |
85 |
79 84
|
eqtrd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) = ( 2 x. ( 4 x. ( k ^ 2 ) ) ) ) |
86 |
85
|
oveq1d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) = ( ( 2 x. ( 4 x. ( k ^ 2 ) ) ) + ( 2 x. ( k x. R ) ) ) ) |
87 |
68
|
zcnd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 4 x. ( k ^ 2 ) ) e. CC ) |
88 |
62
|
zcnd |
|- ( ( k e. ZZ /\ R e. ZZ ) -> ( k x. R ) e. CC ) |
89 |
88
|
ancoms |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k x. R ) e. CC ) |
90 |
80 87 89
|
adddid |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) = ( ( 2 x. ( 4 x. ( k ^ 2 ) ) ) + ( 2 x. ( k x. R ) ) ) ) |
91 |
86 90
|
eqtr4d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) = ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
92 |
72 91
|
breqtrrd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) |
93 |
65 92
|
jca |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
94 |
93
|
ex |
|- ( R e. ZZ -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
95 |
55 94
|
syl |
|- ( R e. NN0 -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
96 |
54 95
|
syl |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
97 |
96
|
imp |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
98 |
97
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
99 |
|
dvdsaddre2b |
|- ( ( 2 e. ZZ /\ ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR /\ ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
100 |
33 51 98 99
|
mp3an2ani |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
101 |
32 100
|
bitr4d |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
102 |
101
|
ex |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( 8 x. k ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
103 |
16 102
|
sylbid |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( k x. 8 ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
104 |
103
|
rexlimdva |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( E. k e. ZZ N = ( ( k x. 8 ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
105 |
9 104
|
mpd |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |