| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8nn |
|- 8 e. NN |
| 2 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 3 |
1 2
|
ax-mp |
|- 8 e. RR+ |
| 4 |
|
eqcom |
|- ( R = ( N mod 8 ) <-> ( N mod 8 ) = R ) |
| 5 |
|
modmuladdim |
|- ( ( N e. ZZ /\ 8 e. RR+ ) -> ( ( N mod 8 ) = R -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
| 6 |
4 5
|
biimtrid |
|- ( ( N e. ZZ /\ 8 e. RR+ ) -> ( R = ( N mod 8 ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
| 7 |
3 6
|
mpan2 |
|- ( N e. ZZ -> ( R = ( N mod 8 ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) ) |
| 8 |
7
|
imp |
|- ( ( N e. ZZ /\ R = ( N mod 8 ) ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) |
| 9 |
8
|
3adant2 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> E. k e. ZZ N = ( ( k x. 8 ) + R ) ) |
| 10 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
| 11 |
|
8cn |
|- 8 e. CC |
| 12 |
11
|
a1i |
|- ( k e. ZZ -> 8 e. CC ) |
| 13 |
10 12
|
mulcomd |
|- ( k e. ZZ -> ( k x. 8 ) = ( 8 x. k ) ) |
| 14 |
13
|
adantl |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( k x. 8 ) = ( 8 x. k ) ) |
| 15 |
14
|
oveq1d |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( k x. 8 ) + R ) = ( ( 8 x. k ) + R ) ) |
| 16 |
15
|
eqeq2d |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( k x. 8 ) + R ) <-> N = ( ( 8 x. k ) + R ) ) ) |
| 17 |
|
simpr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> k e. ZZ ) |
| 18 |
17
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> k e. ZZ ) |
| 19 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
| 20 |
1
|
a1i |
|- ( N e. ZZ -> 8 e. NN ) |
| 21 |
19 20
|
zmodcld |
|- ( N e. ZZ -> ( N mod 8 ) e. NN0 ) |
| 22 |
21
|
nn0zd |
|- ( N e. ZZ -> ( N mod 8 ) e. ZZ ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. ZZ ) |
| 24 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. ZZ <-> ( N mod 8 ) e. ZZ ) ) |
| 25 |
24
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. ZZ <-> ( N mod 8 ) e. ZZ ) ) |
| 26 |
23 25
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. ZZ ) |
| 27 |
26
|
adantr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> R e. ZZ ) |
| 28 |
27
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> R e. ZZ ) |
| 29 |
|
simpr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> N = ( ( 8 x. k ) + R ) ) |
| 30 |
|
2lgsoddprmlem1 |
|- ( ( k e. ZZ /\ R e. ZZ /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
| 31 |
18 28 29 30
|
syl3anc |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
| 32 |
31
|
breq2d |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 33 |
|
2z |
|- 2 e. ZZ |
| 34 |
|
simp1 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> N e. ZZ ) |
| 35 |
1
|
a1i |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> 8 e. NN ) |
| 36 |
34 35
|
zmodcld |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. NN0 ) |
| 37 |
36
|
nn0red |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( N mod 8 ) e. RR ) |
| 38 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. RR <-> ( N mod 8 ) e. RR ) ) |
| 39 |
38
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. RR <-> ( N mod 8 ) e. RR ) ) |
| 40 |
37 39
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. RR ) |
| 41 |
|
resqcl |
|- ( R e. RR -> ( R ^ 2 ) e. RR ) |
| 42 |
|
peano2rem |
|- ( ( R ^ 2 ) e. RR -> ( ( R ^ 2 ) - 1 ) e. RR ) |
| 43 |
41 42
|
syl |
|- ( R e. RR -> ( ( R ^ 2 ) - 1 ) e. RR ) |
| 44 |
|
8re |
|- 8 e. RR |
| 45 |
44
|
a1i |
|- ( R e. RR -> 8 e. RR ) |
| 46 |
|
8pos |
|- 0 < 8 |
| 47 |
44 46
|
gt0ne0ii |
|- 8 =/= 0 |
| 48 |
47
|
a1i |
|- ( R e. RR -> 8 =/= 0 ) |
| 49 |
43 45 48
|
redivcld |
|- ( R e. RR -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
| 50 |
40 49
|
syl |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
| 51 |
50
|
adantr |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR ) |
| 52 |
|
eleq1 |
|- ( R = ( N mod 8 ) -> ( R e. NN0 <-> ( N mod 8 ) e. NN0 ) ) |
| 53 |
52
|
3ad2ant3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( R e. NN0 <-> ( N mod 8 ) e. NN0 ) ) |
| 54 |
36 53
|
mpbird |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> R e. NN0 ) |
| 55 |
|
nn0z |
|- ( R e. NN0 -> R e. ZZ ) |
| 56 |
1
|
nnzi |
|- 8 e. ZZ |
| 57 |
56
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 8 e. ZZ ) |
| 58 |
|
zsqcl |
|- ( k e. ZZ -> ( k ^ 2 ) e. ZZ ) |
| 59 |
58
|
adantl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k ^ 2 ) e. ZZ ) |
| 60 |
57 59
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) e. ZZ ) |
| 61 |
33
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 e. ZZ ) |
| 62 |
|
zmulcl |
|- ( ( k e. ZZ /\ R e. ZZ ) -> ( k x. R ) e. ZZ ) |
| 63 |
62
|
ancoms |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k x. R ) e. ZZ ) |
| 64 |
61 63
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 x. ( k x. R ) ) e. ZZ ) |
| 65 |
60 64
|
zaddcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ ) |
| 66 |
|
4z |
|- 4 e. ZZ |
| 67 |
66
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 4 e. ZZ ) |
| 68 |
67 59
|
zmulcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 4 x. ( k ^ 2 ) ) e. ZZ ) |
| 69 |
68 63
|
zaddcld |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) |
| 70 |
61 69
|
jca |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 e. ZZ /\ ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) ) |
| 71 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) e. ZZ ) -> 2 || ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
| 72 |
70 71
|
syl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
| 73 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 74 |
|
4cn |
|- 4 e. CC |
| 75 |
|
2cn |
|- 2 e. CC |
| 76 |
74 75
|
mulcomi |
|- ( 4 x. 2 ) = ( 2 x. 4 ) |
| 77 |
73 76
|
eqtr3i |
|- 8 = ( 2 x. 4 ) |
| 78 |
77
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 8 = ( 2 x. 4 ) ) |
| 79 |
78
|
oveq1d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) = ( ( 2 x. 4 ) x. ( k ^ 2 ) ) ) |
| 80 |
75
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 e. CC ) |
| 81 |
74
|
a1i |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 4 e. CC ) |
| 82 |
58
|
zcnd |
|- ( k e. ZZ -> ( k ^ 2 ) e. CC ) |
| 83 |
82
|
adantl |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k ^ 2 ) e. CC ) |
| 84 |
80 81 83
|
mulassd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 2 x. 4 ) x. ( k ^ 2 ) ) = ( 2 x. ( 4 x. ( k ^ 2 ) ) ) ) |
| 85 |
79 84
|
eqtrd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 8 x. ( k ^ 2 ) ) = ( 2 x. ( 4 x. ( k ^ 2 ) ) ) ) |
| 86 |
85
|
oveq1d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) = ( ( 2 x. ( 4 x. ( k ^ 2 ) ) ) + ( 2 x. ( k x. R ) ) ) ) |
| 87 |
68
|
zcnd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 4 x. ( k ^ 2 ) ) e. CC ) |
| 88 |
62
|
zcnd |
|- ( ( k e. ZZ /\ R e. ZZ ) -> ( k x. R ) e. CC ) |
| 89 |
88
|
ancoms |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( k x. R ) e. CC ) |
| 90 |
80 87 89
|
adddid |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) = ( ( 2 x. ( 4 x. ( k ^ 2 ) ) ) + ( 2 x. ( k x. R ) ) ) ) |
| 91 |
86 90
|
eqtr4d |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) = ( 2 x. ( ( 4 x. ( k ^ 2 ) ) + ( k x. R ) ) ) ) |
| 92 |
72 91
|
breqtrrd |
|- ( ( R e. ZZ /\ k e. ZZ ) -> 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) |
| 93 |
65 92
|
jca |
|- ( ( R e. ZZ /\ k e. ZZ ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
| 94 |
93
|
ex |
|- ( R e. ZZ -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
| 95 |
55 94
|
syl |
|- ( R e. NN0 -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
| 96 |
54 95
|
syl |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( k e. ZZ -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) ) |
| 97 |
96
|
imp |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) |
| 99 |
|
dvdsaddre2b |
|- ( ( 2 e. ZZ /\ ( ( ( R ^ 2 ) - 1 ) / 8 ) e. RR /\ ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) e. ZZ /\ 2 || ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 100 |
33 51 98 99
|
mp3an2ani |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 8 x. ( k ^ 2 ) ) + ( 2 x. ( k x. R ) ) ) + ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 101 |
32 100
|
bitr4d |
|- ( ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) /\ N = ( ( 8 x. k ) + R ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |
| 102 |
101
|
ex |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( 8 x. k ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 103 |
16 102
|
sylbid |
|- ( ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) /\ k e. ZZ ) -> ( N = ( ( k x. 8 ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 104 |
103
|
rexlimdva |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( E. k e. ZZ N = ( ( k x. 8 ) + R ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) ) |
| 105 |
9 104
|
mpd |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) ) |