Step |
Hyp |
Ref |
Expression |
1 |
|
lgsdir2lem3 |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) |
2 |
|
eleq1 |
|- ( ( N mod 8 ) = R -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) |
3 |
2
|
eqcoms |
|- ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) |
4 |
|
elun |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) <-> ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) ) |
5 |
|
elpri |
|- ( R e. { 3 , 5 } -> ( R = 3 \/ R = 5 ) ) |
6 |
|
oveq1 |
|- ( R = 3 -> ( R ^ 2 ) = ( 3 ^ 2 ) ) |
7 |
6
|
oveq1d |
|- ( R = 3 -> ( ( R ^ 2 ) - 1 ) = ( ( 3 ^ 2 ) - 1 ) ) |
8 |
7
|
oveq1d |
|- ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 3 ^ 2 ) - 1 ) / 8 ) ) |
9 |
|
2lgsoddprmlem3b |
|- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 |
10 |
8 9
|
eqtrdi |
|- ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 1 ) |
11 |
10
|
breq2d |
|- ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 1 ) ) |
12 |
|
n2dvds1 |
|- -. 2 || 1 |
13 |
12
|
pm2.21i |
|- ( 2 || 1 -> R e. { 1 , 7 } ) |
14 |
11 13
|
syl6bi |
|- ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
15 |
|
oveq1 |
|- ( R = 5 -> ( R ^ 2 ) = ( 5 ^ 2 ) ) |
16 |
15
|
oveq1d |
|- ( R = 5 -> ( ( R ^ 2 ) - 1 ) = ( ( 5 ^ 2 ) - 1 ) ) |
17 |
16
|
oveq1d |
|- ( R = 5 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) |
18 |
17
|
breq2d |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) ) |
19 |
|
2lgsoddprmlem3c |
|- ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3 |
20 |
19
|
breq2i |
|- ( 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) |
21 |
18 20
|
bitrdi |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) ) |
22 |
|
n2dvds3 |
|- -. 2 || 3 |
23 |
22
|
pm2.21i |
|- ( 2 || 3 -> R e. { 1 , 7 } ) |
24 |
21 23
|
syl6bi |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
25 |
14 24
|
jaoi |
|- ( ( R = 3 \/ R = 5 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
26 |
5 25
|
syl |
|- ( R e. { 3 , 5 } -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
27 |
26
|
jao1i |
|- ( ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
28 |
4 27
|
sylbi |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
29 |
|
elpri |
|- ( R e. { 1 , 7 } -> ( R = 1 \/ R = 7 ) ) |
30 |
|
z0even |
|- 2 || 0 |
31 |
|
oveq1 |
|- ( R = 1 -> ( R ^ 2 ) = ( 1 ^ 2 ) ) |
32 |
31
|
oveq1d |
|- ( R = 1 -> ( ( R ^ 2 ) - 1 ) = ( ( 1 ^ 2 ) - 1 ) ) |
33 |
32
|
oveq1d |
|- ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 1 ^ 2 ) - 1 ) / 8 ) ) |
34 |
|
2lgsoddprmlem3a |
|- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0 |
35 |
33 34
|
eqtrdi |
|- ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 0 ) |
36 |
30 35
|
breqtrrid |
|- ( R = 1 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
37 |
|
2z |
|- 2 e. ZZ |
38 |
|
3z |
|- 3 e. ZZ |
39 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ 3 e. ZZ ) -> 2 || ( 2 x. 3 ) ) |
40 |
37 38 39
|
mp2an |
|- 2 || ( 2 x. 3 ) |
41 |
|
oveq1 |
|- ( R = 7 -> ( R ^ 2 ) = ( 7 ^ 2 ) ) |
42 |
41
|
oveq1d |
|- ( R = 7 -> ( ( R ^ 2 ) - 1 ) = ( ( 7 ^ 2 ) - 1 ) ) |
43 |
42
|
oveq1d |
|- ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 7 ^ 2 ) - 1 ) / 8 ) ) |
44 |
|
2lgsoddprmlem3d |
|- ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) |
45 |
43 44
|
eqtrdi |
|- ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) ) |
46 |
40 45
|
breqtrrid |
|- ( R = 7 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
47 |
36 46
|
jaoi |
|- ( ( R = 1 \/ R = 7 ) -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
48 |
29 47
|
syl |
|- ( R e. { 1 , 7 } -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
49 |
28 48
|
impbid1 |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |
50 |
3 49
|
syl6bi |
|- ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) |
51 |
1 50
|
syl5com |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( R = ( N mod 8 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) |
52 |
51
|
3impia |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |