| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lgsdir2lem3 | 
							 |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) | 
						
						
							| 2 | 
							
								
							 | 
							eleq1 | 
							 |-  ( ( N mod 8 ) = R -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) | 
						
						
							| 3 | 
							
								2
							 | 
							eqcoms | 
							 |-  ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) | 
						
						
							| 4 | 
							
								
							 | 
							elun | 
							 |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) <-> ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) ) | 
						
						
							| 5 | 
							
								
							 | 
							elpri | 
							 |-  ( R e. { 3 , 5 } -> ( R = 3 \/ R = 5 ) ) | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( R = 3 -> ( R ^ 2 ) = ( 3 ^ 2 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq1d | 
							 |-  ( R = 3 -> ( ( R ^ 2 ) - 1 ) = ( ( 3 ^ 2 ) - 1 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1d | 
							 |-  ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 3 ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							2lgsoddprmlem3b | 
							 |-  ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							 |-  ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 1 )  | 
						
						
							| 11 | 
							
								10
							 | 
							breq2d | 
							 |-  ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							n2dvds1 | 
							 |-  -. 2 || 1  | 
						
						
							| 13 | 
							
								12
							 | 
							pm2.21i | 
							 |-  ( 2 || 1 -> R e. { 1 , 7 } ) | 
						
						
							| 14 | 
							
								11 13
							 | 
							biimtrdi | 
							 |-  ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							 |-  ( R = 5 -> ( R ^ 2 ) = ( 5 ^ 2 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( R = 5 -> ( ( R ^ 2 ) - 1 ) = ( ( 5 ^ 2 ) - 1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							 |-  ( R = 5 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 5 ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							breq2d | 
							 |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							2lgsoddprmlem3c | 
							 |-  ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3  | 
						
						
							| 20 | 
							
								19
							 | 
							breq2i | 
							 |-  ( 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							bitrdi | 
							 |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							n2dvds3 | 
							 |-  -. 2 || 3  | 
						
						
							| 23 | 
							
								22
							 | 
							pm2.21i | 
							 |-  ( 2 || 3 -> R e. { 1 , 7 } ) | 
						
						
							| 24 | 
							
								21 23
							 | 
							biimtrdi | 
							 |-  ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 25 | 
							
								14 24
							 | 
							jaoi | 
							 |-  ( ( R = 3 \/ R = 5 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 26 | 
							
								5 25
							 | 
							syl | 
							 |-  ( R e. { 3 , 5 } -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 27 | 
							
								26
							 | 
							jao1i | 
							 |-  ( ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 28 | 
							
								4 27
							 | 
							sylbi | 
							 |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) | 
						
						
							| 29 | 
							
								
							 | 
							elpri | 
							 |-  ( R e. { 1 , 7 } -> ( R = 1 \/ R = 7 ) ) | 
						
						
							| 30 | 
							
								
							 | 
							z0even | 
							 |-  2 || 0  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							 |-  ( R = 1 -> ( R ^ 2 ) = ( 1 ^ 2 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1d | 
							 |-  ( R = 1 -> ( ( R ^ 2 ) - 1 ) = ( ( 1 ^ 2 ) - 1 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							oveq1d | 
							 |-  ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 1 ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							2lgsoddprmlem3a | 
							 |-  ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							 |-  ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 0 )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							breqtrrid | 
							 |-  ( R = 1 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 38 | 
							
								
							 | 
							3z | 
							 |-  3 e. ZZ  | 
						
						
							| 39 | 
							
								
							 | 
							dvdsmul1 | 
							 |-  ( ( 2 e. ZZ /\ 3 e. ZZ ) -> 2 || ( 2 x. 3 ) )  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							mp2an | 
							 |-  2 || ( 2 x. 3 )  | 
						
						
							| 41 | 
							
								
							 | 
							oveq1 | 
							 |-  ( R = 7 -> ( R ^ 2 ) = ( 7 ^ 2 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1d | 
							 |-  ( R = 7 -> ( ( R ^ 2 ) - 1 ) = ( ( 7 ^ 2 ) - 1 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							 |-  ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 7 ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							2lgsoddprmlem3d | 
							 |-  ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqtrdi | 
							 |-  ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) )  | 
						
						
							| 46 | 
							
								40 45
							 | 
							breqtrrid | 
							 |-  ( R = 7 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 47 | 
							
								36 46
							 | 
							jaoi | 
							 |-  ( ( R = 1 \/ R = 7 ) -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) )  | 
						
						
							| 48 | 
							
								29 47
							 | 
							syl | 
							 |-  ( R e. { 1 , 7 } -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) | 
						
						
							| 49 | 
							
								28 48
							 | 
							impbid1 | 
							 |-  ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) | 
						
						
							| 50 | 
							
								3 49
							 | 
							biimtrdi | 
							 |-  ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) | 
						
						
							| 51 | 
							
								1 50
							 | 
							syl5com | 
							 |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( R = ( N mod 8 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) | 
						
						
							| 52 | 
							
								51
							 | 
							3impia | 
							 |-  ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |