| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsdir2lem3 |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) ) |
| 2 |
|
eleq1 |
|- ( ( N mod 8 ) = R -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) |
| 3 |
2
|
eqcoms |
|- ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) <-> R e. ( { 1 , 7 } u. { 3 , 5 } ) ) ) |
| 4 |
|
elun |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) <-> ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) ) |
| 5 |
|
elpri |
|- ( R e. { 3 , 5 } -> ( R = 3 \/ R = 5 ) ) |
| 6 |
|
oveq1 |
|- ( R = 3 -> ( R ^ 2 ) = ( 3 ^ 2 ) ) |
| 7 |
6
|
oveq1d |
|- ( R = 3 -> ( ( R ^ 2 ) - 1 ) = ( ( 3 ^ 2 ) - 1 ) ) |
| 8 |
7
|
oveq1d |
|- ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 3 ^ 2 ) - 1 ) / 8 ) ) |
| 9 |
|
2lgsoddprmlem3b |
|- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 |
| 10 |
8 9
|
eqtrdi |
|- ( R = 3 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 1 ) |
| 11 |
10
|
breq2d |
|- ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 1 ) ) |
| 12 |
|
n2dvds1 |
|- -. 2 || 1 |
| 13 |
12
|
pm2.21i |
|- ( 2 || 1 -> R e. { 1 , 7 } ) |
| 14 |
11 13
|
biimtrdi |
|- ( R = 3 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 15 |
|
oveq1 |
|- ( R = 5 -> ( R ^ 2 ) = ( 5 ^ 2 ) ) |
| 16 |
15
|
oveq1d |
|- ( R = 5 -> ( ( R ^ 2 ) - 1 ) = ( ( 5 ^ 2 ) - 1 ) ) |
| 17 |
16
|
oveq1d |
|- ( R = 5 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) |
| 18 |
17
|
breq2d |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) ) ) |
| 19 |
|
2lgsoddprmlem3c |
|- ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3 |
| 20 |
19
|
breq2i |
|- ( 2 || ( ( ( 5 ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) |
| 21 |
18 20
|
bitrdi |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> 2 || 3 ) ) |
| 22 |
|
n2dvds3 |
|- -. 2 || 3 |
| 23 |
22
|
pm2.21i |
|- ( 2 || 3 -> R e. { 1 , 7 } ) |
| 24 |
21 23
|
biimtrdi |
|- ( R = 5 -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 25 |
14 24
|
jaoi |
|- ( ( R = 3 \/ R = 5 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 26 |
5 25
|
syl |
|- ( R e. { 3 , 5 } -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 27 |
26
|
jao1i |
|- ( ( R e. { 1 , 7 } \/ R e. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 28 |
4 27
|
sylbi |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) -> R e. { 1 , 7 } ) ) |
| 29 |
|
elpri |
|- ( R e. { 1 , 7 } -> ( R = 1 \/ R = 7 ) ) |
| 30 |
|
z0even |
|- 2 || 0 |
| 31 |
|
oveq1 |
|- ( R = 1 -> ( R ^ 2 ) = ( 1 ^ 2 ) ) |
| 32 |
31
|
oveq1d |
|- ( R = 1 -> ( ( R ^ 2 ) - 1 ) = ( ( 1 ^ 2 ) - 1 ) ) |
| 33 |
32
|
oveq1d |
|- ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 1 ^ 2 ) - 1 ) / 8 ) ) |
| 34 |
|
2lgsoddprmlem3a |
|- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0 |
| 35 |
33 34
|
eqtrdi |
|- ( R = 1 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = 0 ) |
| 36 |
30 35
|
breqtrrid |
|- ( R = 1 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
| 37 |
|
2z |
|- 2 e. ZZ |
| 38 |
|
3z |
|- 3 e. ZZ |
| 39 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ 3 e. ZZ ) -> 2 || ( 2 x. 3 ) ) |
| 40 |
37 38 39
|
mp2an |
|- 2 || ( 2 x. 3 ) |
| 41 |
|
oveq1 |
|- ( R = 7 -> ( R ^ 2 ) = ( 7 ^ 2 ) ) |
| 42 |
41
|
oveq1d |
|- ( R = 7 -> ( ( R ^ 2 ) - 1 ) = ( ( 7 ^ 2 ) - 1 ) ) |
| 43 |
42
|
oveq1d |
|- ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( ( ( 7 ^ 2 ) - 1 ) / 8 ) ) |
| 44 |
|
2lgsoddprmlem3d |
|- ( ( ( 7 ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) |
| 45 |
43 44
|
eqtrdi |
|- ( R = 7 -> ( ( ( R ^ 2 ) - 1 ) / 8 ) = ( 2 x. 3 ) ) |
| 46 |
40 45
|
breqtrrid |
|- ( R = 7 -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
| 47 |
36 46
|
jaoi |
|- ( ( R = 1 \/ R = 7 ) -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
| 48 |
29 47
|
syl |
|- ( R e. { 1 , 7 } -> 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) ) |
| 49 |
28 48
|
impbid1 |
|- ( R e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |
| 50 |
3 49
|
biimtrdi |
|- ( R = ( N mod 8 ) -> ( ( N mod 8 ) e. ( { 1 , 7 } u. { 3 , 5 } ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) |
| 51 |
1 50
|
syl5com |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( R = ( N mod 8 ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) ) |
| 52 |
51
|
3impia |
|- ( ( N e. ZZ /\ -. 2 || N /\ R = ( N mod 8 ) ) -> ( 2 || ( ( ( R ^ 2 ) - 1 ) / 8 ) <-> R e. { 1 , 7 } ) ) |