Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3a | |- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
2 | 1 | oveq1i | |- ( ( 1 ^ 2 ) - 1 ) = ( 1 - 1 ) |
3 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
4 | 2 3 | eqtri | |- ( ( 1 ^ 2 ) - 1 ) = 0 |
5 | 4 | oveq1i | |- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = ( 0 / 8 ) |
6 | 8cn | |- 8 e. CC |
|
7 | 0re | |- 0 e. RR |
|
8 | 8pos | |- 0 < 8 |
|
9 | 7 8 | gtneii | |- 8 =/= 0 |
10 | 6 9 | div0i | |- ( 0 / 8 ) = 0 |
11 | 5 10 | eqtri | |- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0 |