Metamath Proof Explorer


Theorem 2lgsoddprmlem3a

Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3a
|- ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0

Proof

Step Hyp Ref Expression
1 sq1
 |-  ( 1 ^ 2 ) = 1
2 1 oveq1i
 |-  ( ( 1 ^ 2 ) - 1 ) = ( 1 - 1 )
3 1m1e0
 |-  ( 1 - 1 ) = 0
4 2 3 eqtri
 |-  ( ( 1 ^ 2 ) - 1 ) = 0
5 4 oveq1i
 |-  ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = ( 0 / 8 )
6 8cn
 |-  8 e. CC
7 0re
 |-  0 e. RR
8 8pos
 |-  0 < 8
9 7 8 gtneii
 |-  8 =/= 0
10 6 9 div0i
 |-  ( 0 / 8 ) = 0
11 5 10 eqtri
 |-  ( ( ( 1 ^ 2 ) - 1 ) / 8 ) = 0