Metamath Proof Explorer


Theorem 2lgsoddprmlem3b

Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3b
|- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1

Proof

Step Hyp Ref Expression
1 sq3
 |-  ( 3 ^ 2 ) = 9
2 1 oveq1i
 |-  ( ( 3 ^ 2 ) - 1 ) = ( 9 - 1 )
3 9m1e8
 |-  ( 9 - 1 ) = 8
4 2 3 eqtri
 |-  ( ( 3 ^ 2 ) - 1 ) = 8
5 4 oveq1i
 |-  ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = ( 8 / 8 )
6 8cn
 |-  8 e. CC
7 0re
 |-  0 e. RR
8 8pos
 |-  0 < 8
9 7 8 gtneii
 |-  8 =/= 0
10 6 9 dividi
 |-  ( 8 / 8 ) = 1
11 5 10 eqtri
 |-  ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1