Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3b | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq3 | |- ( 3 ^ 2 ) = 9 |
|
2 | 1 | oveq1i | |- ( ( 3 ^ 2 ) - 1 ) = ( 9 - 1 ) |
3 | 9m1e8 | |- ( 9 - 1 ) = 8 |
|
4 | 2 3 | eqtri | |- ( ( 3 ^ 2 ) - 1 ) = 8 |
5 | 4 | oveq1i | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = ( 8 / 8 ) |
6 | 8cn | |- 8 e. CC |
|
7 | 0re | |- 0 e. RR |
|
8 | 8pos | |- 0 < 8 |
|
9 | 7 8 | gtneii | |- 8 =/= 0 |
10 | 6 9 | dividi | |- ( 8 / 8 ) = 1 |
11 | 5 10 | eqtri | |- ( ( ( 3 ^ 2 ) - 1 ) / 8 ) = 1 |