| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-5 | 
							 |-  5 = ( 4 + 1 )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq1i | 
							 |-  ( 5 ^ 2 ) = ( ( 4 + 1 ) ^ 2 )  | 
						
						
							| 3 | 
							
								
							 | 
							4cn | 
							 |-  4 e. CC  | 
						
						
							| 4 | 
							
								
							 | 
							binom21 | 
							 |-  ( 4 e. CC -> ( ( 4 + 1 ) ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							 |-  ( ( 4 + 1 ) ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqtri | 
							 |-  ( 5 ^ 2 ) = ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq1i | 
							 |-  ( ( 5 ^ 2 ) - 1 ) = ( ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) - 1 )  | 
						
						
							| 8 | 
							
								
							 | 
							3cn | 
							 |-  3 e. CC  | 
						
						
							| 9 | 
							
								
							 | 
							8cn | 
							 |-  8 e. CC  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mulcli | 
							 |-  ( 3 x. 8 ) e. CC  | 
						
						
							| 11 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 12 | 
							
								
							 | 
							sq4e2t8 | 
							 |-  ( 4 ^ 2 ) = ( 2 x. 8 )  | 
						
						
							| 13 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 14 | 
							
								
							 | 
							4t2e8 | 
							 |-  ( 4 x. 2 ) = 8  | 
						
						
							| 15 | 
							
								9
							 | 
							mullidi | 
							 |-  ( 1 x. 8 ) = 8  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtr4i | 
							 |-  ( 4 x. 2 ) = ( 1 x. 8 )  | 
						
						
							| 17 | 
							
								3 13 16
							 | 
							mulcomli | 
							 |-  ( 2 x. 4 ) = ( 1 x. 8 )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							oveq12i | 
							 |-  ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) = ( ( 2 x. 8 ) + ( 1 x. 8 ) )  | 
						
						
							| 19 | 
							
								13 11 9
							 | 
							adddiri | 
							 |-  ( ( 2 + 1 ) x. 8 ) = ( ( 2 x. 8 ) + ( 1 x. 8 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							2p1e3 | 
							 |-  ( 2 + 1 ) = 3  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq1i | 
							 |-  ( ( 2 + 1 ) x. 8 ) = ( 3 x. 8 )  | 
						
						
							| 22 | 
							
								18 19 21
							 | 
							3eqtr2i | 
							 |-  ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) = ( 3 x. 8 )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1i | 
							 |-  ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) = ( ( 3 x. 8 ) + 1 )  | 
						
						
							| 24 | 
							
								10 11 23
							 | 
							mvrraddi | 
							 |-  ( ( ( ( 4 ^ 2 ) + ( 2 x. 4 ) ) + 1 ) - 1 ) = ( 3 x. 8 )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							eqtri | 
							 |-  ( ( 5 ^ 2 ) - 1 ) = ( 3 x. 8 )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq1i | 
							 |-  ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = ( ( 3 x. 8 ) / 8 )  | 
						
						
							| 27 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 28 | 
							
								
							 | 
							8pos | 
							 |-  0 < 8  | 
						
						
							| 29 | 
							
								27 28
							 | 
							gtneii | 
							 |-  8 =/= 0  | 
						
						
							| 30 | 
							
								8 9 29
							 | 
							divcan4i | 
							 |-  ( ( 3 x. 8 ) / 8 ) = 3  | 
						
						
							| 31 | 
							
								26 30
							 | 
							eqtri | 
							 |-  ( ( ( 5 ^ 2 ) - 1 ) / 8 ) = 3  |