| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( N mod 8 ) = ( N mod 8 ) ) |
| 2 |
|
2lgsoddprmlem2 |
|- ( ( N e. ZZ /\ -. 2 || N /\ ( N mod 8 ) = ( N mod 8 ) ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) ) ) |
| 3 |
1 2
|
mpd3an3 |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) ) ) |
| 4 |
|
2lgsoddprmlem3 |
|- ( ( N e. ZZ /\ -. 2 || N /\ ( N mod 8 ) = ( N mod 8 ) ) -> ( 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) |
| 5 |
1 4
|
mpd3an3 |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( ( N mod 8 ) ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) |
| 6 |
3 5
|
bitrd |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( 2 || ( ( ( N ^ 2 ) - 1 ) / 8 ) <-> ( N mod 8 ) e. { 1 , 7 } ) ) |