Step |
Hyp |
Ref |
Expression |
1 |
|
2llnm.l |
|- .<_ = ( le ` K ) |
2 |
|
2llnm.j |
|- .\/ = ( join ` K ) |
3 |
|
2llnm.m |
|- ./\ = ( meet ` K ) |
4 |
|
2llnm.a |
|- A = ( Atoms ` K ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL ) |
6 |
|
simp21 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
9 |
6 8
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. ( Base ` K ) ) |
10 |
|
simp22 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A ) |
11 |
|
simp23 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
12 |
|
simp3 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( P .\/ Q ) ) |
13 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
14 |
5 6 10 13
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
15 |
14
|
breq2d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> ( R .<_ ( P .\/ Q ) <-> R .<_ ( Q .\/ P ) ) ) |
16 |
12 15
|
mtbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( Q .\/ P ) ) |
17 |
7 1 2 3 4
|
2llnma1b |
|- ( ( K e. HL /\ ( P e. ( Base ` K ) /\ Q e. A /\ R e. A ) /\ -. R .<_ ( Q .\/ P ) ) -> ( ( Q .\/ P ) ./\ ( Q .\/ R ) ) = Q ) |
18 |
5 9 10 11 16 17
|
syl131anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ P ) ./\ ( Q .\/ R ) ) = Q ) |