| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2llnma1b.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							2llnma1b.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							2llnma1b.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							2llnma1b.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							2llnma1b.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P e. A )  | 
						
						
							| 9 | 
							
								1 5
							 | 
							atbase | 
							 |-  ( P e. A -> P e. B )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P e. B )  | 
						
						
							| 11 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> X e. B )  | 
						
						
							| 12 | 
							
								1 2 3
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ P e. B /\ X e. B ) -> P .<_ ( P .\/ X ) )  | 
						
						
							| 13 | 
							
								7 10 11 12
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( P .\/ X ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> Q e. A )  | 
						
						
							| 15 | 
							
								1 5
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. B )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> Q e. B )  | 
						
						
							| 17 | 
							
								1 2 3
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 18 | 
							
								7 10 16 17
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( P .\/ Q ) )  | 
						
						
							| 19 | 
							
								1 3
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P .\/ X ) e. B )  | 
						
						
							| 20 | 
							
								7 10 11 19
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ X ) e. B )  | 
						
						
							| 21 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. HL )  | 
						
						
							| 22 | 
							
								1 3 5
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B )  | 
						
						
							| 23 | 
							
								21 8 14 22
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ Q ) e. B )  | 
						
						
							| 24 | 
							
								1 2 4
							 | 
							latlem12 | 
							 |-  ( ( K e. Lat /\ ( P e. B /\ ( P .\/ X ) e. B /\ ( P .\/ Q ) e. B ) ) -> ( ( P .<_ ( P .\/ X ) /\ P .<_ ( P .\/ Q ) ) <-> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 25 | 
							
								7 10 20 23 24
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .<_ ( P .\/ X ) /\ P .<_ ( P .\/ Q ) ) <-> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 26 | 
							
								13 18 25
							 | 
							mpbi2and | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							hlatl | 
							 |-  ( K e. HL -> K e. AtLat )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. AtLat )  | 
						
						
							| 29 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> -. Q .<_ ( P .\/ X ) )  | 
						
						
							| 30 | 
							
								
							 | 
							nbrne2 | 
							 |-  ( ( P .<_ ( P .\/ X ) /\ -. Q .<_ ( P .\/ X ) ) -> P =/= Q )  | 
						
						
							| 31 | 
							
								13 29 30
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P =/= Q )  | 
						
						
							| 32 | 
							
								1 3
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ X ) e. B /\ Q e. B ) -> ( ( P .\/ X ) .\/ Q ) e. B )  | 
						
						
							| 33 | 
							
								7 20 16 32
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) .\/ Q ) e. B )  | 
						
						
							| 34 | 
							
								1 2 3
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ X ) e. B /\ Q e. B ) -> ( P .\/ X ) .<_ ( ( P .\/ X ) .\/ Q ) )  | 
						
						
							| 35 | 
							
								7 20 16 34
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ X ) .<_ ( ( P .\/ X ) .\/ Q ) )  | 
						
						
							| 36 | 
							
								1 2 7 10 20 33 13 35
							 | 
							lattrd | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( ( P .\/ X ) .\/ Q ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5
							 | 
							cvrat3 | 
							 |-  ( ( K e. HL /\ ( ( P .\/ X ) e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ ( P .\/ X ) /\ P .<_ ( ( P .\/ X ) .\/ Q ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3impia | 
							 |-  ( ( K e. HL /\ ( ( P .\/ X ) e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ -. Q .<_ ( P .\/ X ) /\ P .<_ ( ( P .\/ X ) .\/ Q ) ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A )  | 
						
						
							| 39 | 
							
								21 20 8 14 31 29 36 38
							 | 
							syl133anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A )  | 
						
						
							| 40 | 
							
								2 5
							 | 
							atcmp | 
							 |-  ( ( K e. AtLat /\ P e. A /\ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) -> ( P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) <-> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 41 | 
							
								28 8 39 40
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) <-> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 42 | 
							
								26 41
							 | 
							mpbid | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomd | 
							 |-  ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) = P )  |