Step |
Hyp |
Ref |
Expression |
1 |
|
2llnma1b.b |
|- B = ( Base ` K ) |
2 |
|
2llnma1b.l |
|- .<_ = ( le ` K ) |
3 |
|
2llnma1b.j |
|- .\/ = ( join ` K ) |
4 |
|
2llnma1b.m |
|- ./\ = ( meet ` K ) |
5 |
|
2llnma1b.a |
|- A = ( Atoms ` K ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. Lat ) |
8 |
|
simp22 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P e. A ) |
9 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
10 |
8 9
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P e. B ) |
11 |
|
simp21 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> X e. B ) |
12 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ P e. B /\ X e. B ) -> P .<_ ( P .\/ X ) ) |
13 |
7 10 11 12
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( P .\/ X ) ) |
14 |
|
simp23 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> Q e. A ) |
15 |
1 5
|
atbase |
|- ( Q e. A -> Q e. B ) |
16 |
14 15
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> Q e. B ) |
17 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> P .<_ ( P .\/ Q ) ) |
18 |
7 10 16 17
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( P .\/ Q ) ) |
19 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P .\/ X ) e. B ) |
20 |
7 10 11 19
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ X ) e. B ) |
21 |
|
simp1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. HL ) |
22 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
23 |
21 8 14 22
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ Q ) e. B ) |
24 |
1 2 4
|
latlem12 |
|- ( ( K e. Lat /\ ( P e. B /\ ( P .\/ X ) e. B /\ ( P .\/ Q ) e. B ) ) -> ( ( P .<_ ( P .\/ X ) /\ P .<_ ( P .\/ Q ) ) <-> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) ) |
25 |
7 10 20 23 24
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .<_ ( P .\/ X ) /\ P .<_ ( P .\/ Q ) ) <-> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) ) |
26 |
13 18 25
|
mpbi2and |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) |
27 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
28 |
27
|
3ad2ant1 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> K e. AtLat ) |
29 |
|
simp3 |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> -. Q .<_ ( P .\/ X ) ) |
30 |
|
nbrne2 |
|- ( ( P .<_ ( P .\/ X ) /\ -. Q .<_ ( P .\/ X ) ) -> P =/= Q ) |
31 |
13 29 30
|
syl2anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P =/= Q ) |
32 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ X ) e. B /\ Q e. B ) -> ( ( P .\/ X ) .\/ Q ) e. B ) |
33 |
7 20 16 32
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) .\/ Q ) e. B ) |
34 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ X ) e. B /\ Q e. B ) -> ( P .\/ X ) .<_ ( ( P .\/ X ) .\/ Q ) ) |
35 |
7 20 16 34
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .\/ X ) .<_ ( ( P .\/ X ) .\/ Q ) ) |
36 |
1 2 7 10 20 33 13 35
|
lattrd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P .<_ ( ( P .\/ X ) .\/ Q ) ) |
37 |
1 2 3 4 5
|
cvrat3 |
|- ( ( K e. HL /\ ( ( P .\/ X ) e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ ( P .\/ X ) /\ P .<_ ( ( P .\/ X ) .\/ Q ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) ) |
38 |
37
|
3impia |
|- ( ( K e. HL /\ ( ( P .\/ X ) e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ -. Q .<_ ( P .\/ X ) /\ P .<_ ( ( P .\/ X ) .\/ Q ) ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) |
39 |
21 20 8 14 31 29 36 38
|
syl133anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) |
40 |
2 5
|
atcmp |
|- ( ( K e. AtLat /\ P e. A /\ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) e. A ) -> ( P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) <-> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) ) |
41 |
28 8 39 40
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( P .<_ ( ( P .\/ X ) ./\ ( P .\/ Q ) ) <-> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) ) |
42 |
26 41
|
mpbid |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> P = ( ( P .\/ X ) ./\ ( P .\/ Q ) ) ) |
43 |
42
|
eqcomd |
|- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ -. Q .<_ ( P .\/ X ) ) -> ( ( P .\/ X ) ./\ ( P .\/ Q ) ) = P ) |