| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2llnmat.m |
|- ./\ = ( meet ` K ) |
| 2 |
|
2llnmat.z |
|- .0. = ( 0. ` K ) |
| 3 |
|
2llnmat.a |
|- A = ( Atoms ` K ) |
| 4 |
|
2llnmat.n |
|- N = ( LLines ` K ) |
| 5 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> K e. HL ) |
| 6 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 7 |
5 6
|
syl |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> K e. AtLat ) |
| 8 |
5
|
hllatd |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> K e. Lat ) |
| 9 |
|
simpl2 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> X e. N ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 4
|
llnbase |
|- ( X e. N -> X e. ( Base ` K ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> X e. ( Base ` K ) ) |
| 13 |
|
simpl3 |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> Y e. N ) |
| 14 |
10 4
|
llnbase |
|- ( Y e. N -> Y e. ( Base ` K ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> Y e. ( Base ` K ) ) |
| 16 |
10 1
|
latmcl |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X ./\ Y ) e. ( Base ` K ) ) |
| 17 |
8 12 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> ( X ./\ Y ) e. ( Base ` K ) ) |
| 18 |
|
simprr |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> ( X ./\ Y ) =/= .0. ) |
| 19 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 20 |
10 19 2 3
|
atlex |
|- ( ( K e. AtLat /\ ( X ./\ Y ) e. ( Base ` K ) /\ ( X ./\ Y ) =/= .0. ) -> E. p e. A p ( le ` K ) ( X ./\ Y ) ) |
| 21 |
7 17 18 20
|
syl3anc |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> E. p e. A p ( le ` K ) ( X ./\ Y ) ) |
| 22 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> X =/= Y ) |
| 23 |
|
simp1l |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( K e. HL /\ X e. N /\ Y e. N ) ) |
| 24 |
19 4
|
llncmp |
|- ( ( K e. HL /\ X e. N /\ Y e. N ) -> ( X ( le ` K ) Y <-> X = Y ) ) |
| 25 |
23 24
|
syl |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X ( le ` K ) Y <-> X = Y ) ) |
| 26 |
|
simp1l1 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> K e. HL ) |
| 27 |
26
|
hllatd |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> K e. Lat ) |
| 28 |
|
simp1l2 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> X e. N ) |
| 29 |
28 11
|
syl |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> X e. ( Base ` K ) ) |
| 30 |
|
simp1l3 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> Y e. N ) |
| 31 |
30 14
|
syl |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> Y e. ( Base ` K ) ) |
| 32 |
10 19 1
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X ( le ` K ) Y <-> ( X ./\ Y ) = X ) ) |
| 33 |
27 29 31 32
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X ( le ` K ) Y <-> ( X ./\ Y ) = X ) ) |
| 34 |
25 33
|
bitr3d |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X = Y <-> ( X ./\ Y ) = X ) ) |
| 35 |
34
|
necon3bid |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X =/= Y <-> ( X ./\ Y ) =/= X ) ) |
| 36 |
22 35
|
mpbid |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X ./\ Y ) =/= X ) |
| 37 |
|
simp3 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p ( le ` K ) ( X ./\ Y ) ) |
| 38 |
10 19 1
|
latmle1 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( X ./\ Y ) ( le ` K ) X ) |
| 39 |
27 29 31 38
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X ./\ Y ) ( le ` K ) X ) |
| 40 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 41 |
26 40
|
syl |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> K e. Poset ) |
| 42 |
10 3
|
atbase |
|- ( p e. A -> p e. ( Base ` K ) ) |
| 43 |
42
|
3ad2ant2 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p e. ( Base ` K ) ) |
| 44 |
27 29 31 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( X ./\ Y ) e. ( Base ` K ) ) |
| 45 |
|
simp2 |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p e. A ) |
| 46 |
10 19 27 43 44 29 37 39
|
lattrd |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p ( le ` K ) X ) |
| 47 |
|
eqid |
|- ( |
| 48 |
19 47 3 4
|
atcvrlln2 |
|- ( ( ( K e. HL /\ p e. A /\ X e. N ) /\ p ( le ` K ) X ) -> p ( |
| 49 |
26 45 28 46 48
|
syl31anc |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p ( |
| 50 |
10 19 47
|
cvrnbtwn4 |
|- ( ( K e. Poset /\ ( p e. ( Base ` K ) /\ X e. ( Base ` K ) /\ ( X ./\ Y ) e. ( Base ` K ) ) /\ p ( ( ( p ( le ` K ) ( X ./\ Y ) /\ ( X ./\ Y ) ( le ` K ) X ) <-> ( p = ( X ./\ Y ) \/ ( X ./\ Y ) = X ) ) ) |
| 51 |
41 43 29 44 49 50
|
syl131anc |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( ( p ( le ` K ) ( X ./\ Y ) /\ ( X ./\ Y ) ( le ` K ) X ) <-> ( p = ( X ./\ Y ) \/ ( X ./\ Y ) = X ) ) ) |
| 52 |
37 39 51
|
mpbi2and |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( p = ( X ./\ Y ) \/ ( X ./\ Y ) = X ) ) |
| 53 |
|
neor |
|- ( ( p = ( X ./\ Y ) \/ ( X ./\ Y ) = X ) <-> ( p =/= ( X ./\ Y ) -> ( X ./\ Y ) = X ) ) |
| 54 |
52 53
|
sylib |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( p =/= ( X ./\ Y ) -> ( X ./\ Y ) = X ) ) |
| 55 |
54
|
necon1d |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> ( ( X ./\ Y ) =/= X -> p = ( X ./\ Y ) ) ) |
| 56 |
36 55
|
mpd |
|- ( ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) /\ p e. A /\ p ( le ` K ) ( X ./\ Y ) ) -> p = ( X ./\ Y ) ) |
| 57 |
56
|
3exp |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> ( p e. A -> ( p ( le ` K ) ( X ./\ Y ) -> p = ( X ./\ Y ) ) ) ) |
| 58 |
57
|
reximdvai |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> ( E. p e. A p ( le ` K ) ( X ./\ Y ) -> E. p e. A p = ( X ./\ Y ) ) ) |
| 59 |
21 58
|
mpd |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> E. p e. A p = ( X ./\ Y ) ) |
| 60 |
|
risset |
|- ( ( X ./\ Y ) e. A <-> E. p e. A p = ( X ./\ Y ) ) |
| 61 |
59 60
|
sylibr |
|- ( ( ( K e. HL /\ X e. N /\ Y e. N ) /\ ( X =/= Y /\ ( X ./\ Y ) =/= .0. ) ) -> ( X ./\ Y ) e. A ) |