Step |
Hyp |
Ref |
Expression |
1 |
|
2lnne.l |
|- .<_ = ( le ` K ) |
2 |
|
2lnne.j |
|- .\/ = ( join ` K ) |
3 |
|
2lnne.a |
|- A = ( Atoms ` K ) |
4 |
|
simpl |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> K e. HL ) |
5 |
|
simprr |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> R e. A ) |
6 |
|
simprl |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> P e. A ) |
7 |
1 2 3
|
hlatlej2 |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> P .<_ ( R .\/ P ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> P .<_ ( R .\/ P ) ) |
9 |
|
breq2 |
|- ( ( R .\/ P ) = ( R .\/ Q ) -> ( P .<_ ( R .\/ P ) <-> P .<_ ( R .\/ Q ) ) ) |
10 |
8 9
|
syl5ibcom |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> ( ( R .\/ P ) = ( R .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
11 |
10
|
necon3bd |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) ) -> ( -. P .<_ ( R .\/ Q ) -> ( R .\/ P ) =/= ( R .\/ Q ) ) ) |
12 |
11
|
3impia |
|- ( ( K e. HL /\ ( P e. A /\ R e. A ) /\ -. P .<_ ( R .\/ Q ) ) -> ( R .\/ P ) =/= ( R .\/ Q ) ) |