Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
9nn |
|- 9 e. NN |
3 |
2
|
nnzi |
|- 9 e. ZZ |
4 |
|
2re |
|- 2 e. RR |
5 |
|
9re |
|- 9 e. RR |
6 |
|
2lt9 |
|- 2 < 9 |
7 |
4 5 6
|
ltleii |
|- 2 <_ 9 |
8 |
|
eluz2 |
|- ( 9 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 9 e. ZZ /\ 2 <_ 9 ) ) |
9 |
1 3 7 8
|
mpbir3an |
|- 9 e. ( ZZ>= ` 2 ) |
10 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
11 |
1 10
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
12 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
13 |
12
|
eqcomi |
|- 9 = ( 3 ^ 2 ) |
14 |
13
|
oveq1i |
|- ( 9 gcd 2 ) = ( ( 3 ^ 2 ) gcd 2 ) |
15 |
|
2lt3 |
|- 2 < 3 |
16 |
4 15
|
gtneii |
|- 3 =/= 2 |
17 |
|
3prm |
|- 3 e. Prime |
18 |
|
2prm |
|- 2 e. Prime |
19 |
|
prmrp |
|- ( ( 3 e. Prime /\ 2 e. Prime ) -> ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 ) ) |
20 |
17 18 19
|
mp2an |
|- ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 ) |
21 |
16 20
|
mpbir |
|- ( 3 gcd 2 ) = 1 |
22 |
|
3z |
|- 3 e. ZZ |
23 |
|
2nn0 |
|- 2 e. NN0 |
24 |
|
rpexp1i |
|- ( ( 3 e. ZZ /\ 2 e. ZZ /\ 2 e. NN0 ) -> ( ( 3 gcd 2 ) = 1 -> ( ( 3 ^ 2 ) gcd 2 ) = 1 ) ) |
25 |
22 1 23 24
|
mp3an |
|- ( ( 3 gcd 2 ) = 1 -> ( ( 3 ^ 2 ) gcd 2 ) = 1 ) |
26 |
21 25
|
ax-mp |
|- ( ( 3 ^ 2 ) gcd 2 ) = 1 |
27 |
14 26
|
eqtri |
|- ( 9 gcd 2 ) = 1 |
28 |
|
logbgcd1irr |
|- ( ( 9 e. ( ZZ>= ` 2 ) /\ 2 e. ( ZZ>= ` 2 ) /\ ( 9 gcd 2 ) = 1 ) -> ( 2 logb 9 ) e. ( RR \ QQ ) ) |
29 |
9 11 27 28
|
mp3an |
|- ( 2 logb 9 ) e. ( RR \ QQ ) |