Metamath Proof Explorer


Theorem 2logb9irr

Description: Example for logbgcd1irr . The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion 2logb9irr
|- ( 2 logb 9 ) e. ( RR \ QQ )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 9nn
 |-  9 e. NN
3 2 nnzi
 |-  9 e. ZZ
4 2re
 |-  2 e. RR
5 9re
 |-  9 e. RR
6 2lt9
 |-  2 < 9
7 4 5 6 ltleii
 |-  2 <_ 9
8 eluz2
 |-  ( 9 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 9 e. ZZ /\ 2 <_ 9 ) )
9 1 3 7 8 mpbir3an
 |-  9 e. ( ZZ>= ` 2 )
10 uzid
 |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) )
11 1 10 ax-mp
 |-  2 e. ( ZZ>= ` 2 )
12 sq3
 |-  ( 3 ^ 2 ) = 9
13 12 eqcomi
 |-  9 = ( 3 ^ 2 )
14 13 oveq1i
 |-  ( 9 gcd 2 ) = ( ( 3 ^ 2 ) gcd 2 )
15 2lt3
 |-  2 < 3
16 4 15 gtneii
 |-  3 =/= 2
17 3prm
 |-  3 e. Prime
18 2prm
 |-  2 e. Prime
19 prmrp
 |-  ( ( 3 e. Prime /\ 2 e. Prime ) -> ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 ) )
20 17 18 19 mp2an
 |-  ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 )
21 16 20 mpbir
 |-  ( 3 gcd 2 ) = 1
22 3z
 |-  3 e. ZZ
23 2nn0
 |-  2 e. NN0
24 rpexp1i
 |-  ( ( 3 e. ZZ /\ 2 e. ZZ /\ 2 e. NN0 ) -> ( ( 3 gcd 2 ) = 1 -> ( ( 3 ^ 2 ) gcd 2 ) = 1 ) )
25 22 1 23 24 mp3an
 |-  ( ( 3 gcd 2 ) = 1 -> ( ( 3 ^ 2 ) gcd 2 ) = 1 )
26 21 25 ax-mp
 |-  ( ( 3 ^ 2 ) gcd 2 ) = 1
27 14 26 eqtri
 |-  ( 9 gcd 2 ) = 1
28 logbgcd1irr
 |-  ( ( 9 e. ( ZZ>= ` 2 ) /\ 2 e. ( ZZ>= ` 2 ) /\ ( 9 gcd 2 ) = 1 ) -> ( 2 logb 9 ) e. ( RR \ QQ ) )
29 9 11 27 28 mp3an
 |-  ( 2 logb 9 ) e. ( RR \ QQ )