Step |
Hyp |
Ref |
Expression |
1 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
2 |
1
|
eqcomi |
|- 9 = ( 3 ^ 2 ) |
3 |
2
|
oveq2i |
|- ( 2 logb 9 ) = ( 2 logb ( 3 ^ 2 ) ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
2ne0 |
|- 2 =/= 0 |
6 |
|
1ne2 |
|- 1 =/= 2 |
7 |
6
|
necomi |
|- 2 =/= 1 |
8 |
|
eldifpr |
|- ( 2 e. ( CC \ { 0 , 1 } ) <-> ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) ) |
9 |
4 5 7 8
|
mpbir3an |
|- 2 e. ( CC \ { 0 , 1 } ) |
10 |
|
3rp |
|- 3 e. RR+ |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
relogbzexp |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ 3 e. RR+ /\ 2 e. ZZ ) -> ( 2 logb ( 3 ^ 2 ) ) = ( 2 x. ( 2 logb 3 ) ) ) |
13 |
9 10 11 12
|
mp3an |
|- ( 2 logb ( 3 ^ 2 ) ) = ( 2 x. ( 2 logb 3 ) ) |
14 |
3 13
|
eqtri |
|- ( 2 logb 9 ) = ( 2 x. ( 2 logb 3 ) ) |
15 |
|
3cn |
|- 3 e. CC |
16 |
|
3ne0 |
|- 3 =/= 0 |
17 |
|
eldifsn |
|- ( 3 e. ( CC \ { 0 } ) <-> ( 3 e. CC /\ 3 =/= 0 ) ) |
18 |
15 16 17
|
mpbir2an |
|- 3 e. ( CC \ { 0 } ) |
19 |
|
logbcl |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ 3 e. ( CC \ { 0 } ) ) -> ( 2 logb 3 ) e. CC ) |
20 |
9 18 19
|
mp2an |
|- ( 2 logb 3 ) e. CC |
21 |
4 20
|
mulcomi |
|- ( 2 x. ( 2 logb 3 ) ) = ( ( 2 logb 3 ) x. 2 ) |
22 |
|
2logb3irr |
|- ( 2 logb 3 ) e. ( RR \ QQ ) |
23 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
24 |
11 23
|
ax-mp |
|- 2 e. QQ |
25 |
|
irrmul |
|- ( ( ( 2 logb 3 ) e. ( RR \ QQ ) /\ 2 e. QQ /\ 2 =/= 0 ) -> ( ( 2 logb 3 ) x. 2 ) e. ( RR \ QQ ) ) |
26 |
22 24 5 25
|
mp3an |
|- ( ( 2 logb 3 ) x. 2 ) e. ( RR \ QQ ) |
27 |
21 26
|
eqeltri |
|- ( 2 x. ( 2 logb 3 ) ) e. ( RR \ QQ ) |
28 |
14 27
|
eqeltri |
|- ( 2 logb 9 ) e. ( RR \ QQ ) |