Step |
Hyp |
Ref |
Expression |
1 |
|
2lplnj.l |
|- .<_ = ( le ` K ) |
2 |
|
2lplnj.j |
|- .\/ = ( join ` K ) |
3 |
|
2lplnj.p |
|- P = ( LPlanes ` K ) |
4 |
|
2lplnj.v |
|- V = ( LVols ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
7 |
5 1 2 6 3
|
islpln2 |
|- ( K e. HL -> ( X e. P <-> ( X e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) ) ) |
8 |
|
simpr |
|- ( ( X e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) |
9 |
7 8
|
syl6bi |
|- ( K e. HL -> ( X e. P -> E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) ) |
10 |
5 1 2 6 3
|
islpln2 |
|- ( K e. HL -> ( Y e. P <-> ( Y e. ( Base ` K ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) ) |
11 |
|
simpr |
|- ( ( Y e. ( Base ` K ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) |
12 |
10 11
|
syl6bi |
|- ( K e. HL -> ( Y e. P -> E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) |
13 |
9 12
|
anim12d |
|- ( K e. HL -> ( ( X e. P /\ Y e. P ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) ) |
14 |
13
|
imp |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) |
15 |
14
|
3adantr3 |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) |
16 |
15
|
3adant3 |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) ) |
17 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> X = ( ( q .\/ r ) .\/ s ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> X = ( ( q .\/ r ) .\/ s ) ) |
19 |
|
simp33 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> Y = ( ( t .\/ u ) .\/ v ) ) |
20 |
18 19
|
oveq12d |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( X .\/ Y ) = ( ( ( q .\/ r ) .\/ s ) .\/ ( ( t .\/ u ) .\/ v ) ) ) |
21 |
|
simp11 |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> K e. HL ) |
22 |
|
simp123 |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> W e. V ) |
23 |
21 22
|
jca |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> ( K e. HL /\ W e. V ) ) |
24 |
23
|
adantr |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> ( K e. HL /\ W e. V ) ) |
25 |
24
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( K e. HL /\ W e. V ) ) |
26 |
|
simp2l |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> q e. ( Atoms ` K ) ) |
27 |
|
simp2rl |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> r e. ( Atoms ` K ) ) |
28 |
|
simp2rr |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> s e. ( Atoms ` K ) ) |
29 |
26 27 28
|
3jca |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) |
30 |
29
|
adantr |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) |
31 |
30
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) |
32 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> q =/= r ) |
33 |
32
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> q =/= r ) |
34 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> -. s .<_ ( q .\/ r ) ) |
35 |
34
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> -. s .<_ ( q .\/ r ) ) |
36 |
33 35
|
jca |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( q =/= r /\ -. s .<_ ( q .\/ r ) ) ) |
37 |
|
simp1r |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> t e. ( Atoms ` K ) ) |
38 |
|
simp2l |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> u e. ( Atoms ` K ) ) |
39 |
|
simp2r |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> v e. ( Atoms ` K ) ) |
40 |
37 38 39
|
3jca |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) ) |
41 |
|
simp31 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> t =/= u ) |
42 |
|
simp32 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> -. v .<_ ( t .\/ u ) ) |
43 |
41 42
|
jca |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( t =/= u /\ -. v .<_ ( t .\/ u ) ) ) |
44 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) |
45 |
44
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) |
46 |
|
breq1 |
|- ( X = ( ( q .\/ r ) .\/ s ) -> ( X .<_ W <-> ( ( q .\/ r ) .\/ s ) .<_ W ) ) |
47 |
|
neeq1 |
|- ( X = ( ( q .\/ r ) .\/ s ) -> ( X =/= Y <-> ( ( q .\/ r ) .\/ s ) =/= Y ) ) |
48 |
46 47
|
3anbi13d |
|- ( X = ( ( q .\/ r ) .\/ s ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( ( q .\/ r ) .\/ s ) .<_ W /\ Y .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= Y ) ) ) |
49 |
|
breq1 |
|- ( Y = ( ( t .\/ u ) .\/ v ) -> ( Y .<_ W <-> ( ( t .\/ u ) .\/ v ) .<_ W ) ) |
50 |
|
neeq2 |
|- ( Y = ( ( t .\/ u ) .\/ v ) -> ( ( ( q .\/ r ) .\/ s ) =/= Y <-> ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) |
51 |
49 50
|
3anbi23d |
|- ( Y = ( ( t .\/ u ) .\/ v ) -> ( ( ( ( q .\/ r ) .\/ s ) .<_ W /\ Y .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= Y ) <-> ( ( ( q .\/ r ) .\/ s ) .<_ W /\ ( ( t .\/ u ) .\/ v ) .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) ) |
52 |
48 51
|
sylan9bb |
|- ( ( X = ( ( q .\/ r ) .\/ s ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( ( q .\/ r ) .\/ s ) .<_ W /\ ( ( t .\/ u ) .\/ v ) .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) ) |
53 |
18 19 52
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( ( X .<_ W /\ Y .<_ W /\ X =/= Y ) <-> ( ( ( q .\/ r ) .\/ s ) .<_ W /\ ( ( t .\/ u ) .\/ v ) .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) ) |
54 |
45 53
|
mpbid |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( ( ( q .\/ r ) .\/ s ) .<_ W /\ ( ( t .\/ u ) .\/ v ) .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) |
55 |
1 2 6 4
|
2lplnja |
|- ( ( ( ( K e. HL /\ W e. V ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) ) ) /\ ( ( t e. ( Atoms ` K ) /\ u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) ) ) /\ ( ( ( q .\/ r ) .\/ s ) .<_ W /\ ( ( t .\/ u ) .\/ v ) .<_ W /\ ( ( q .\/ r ) .\/ s ) =/= ( ( t .\/ u ) .\/ v ) ) ) -> ( ( ( q .\/ r ) .\/ s ) .\/ ( ( t .\/ u ) .\/ v ) ) = W ) |
56 |
25 31 36 40 43 54 55
|
syl321anc |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( ( ( q .\/ r ) .\/ s ) .\/ ( ( t .\/ u ) .\/ v ) ) = W ) |
57 |
20 56
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) /\ ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) /\ ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( X .\/ Y ) = W ) |
58 |
57
|
3exp |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> ( ( u e. ( Atoms ` K ) /\ v e. ( Atoms ` K ) ) -> ( ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) ) |
59 |
58
|
rexlimdvv |
|- ( ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) /\ t e. ( Atoms ` K ) ) -> ( E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) |
60 |
59
|
rexlimdva |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) /\ ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) |
61 |
60
|
3exp |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( ( q e. ( Atoms ` K ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) -> ( ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) ) ) |
62 |
61
|
expdimp |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ q e. ( Atoms ` K ) ) -> ( ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) -> ( ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) ) ) |
63 |
62
|
rexlimdvv |
|- ( ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) /\ q e. ( Atoms ` K ) ) -> ( E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) ) |
64 |
63
|
rexlimdva |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) -> ( E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) -> ( X .\/ Y ) = W ) ) ) |
65 |
64
|
impd |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q .\/ r ) /\ X = ( ( q .\/ r ) .\/ s ) ) /\ E. t e. ( Atoms ` K ) E. u e. ( Atoms ` K ) E. v e. ( Atoms ` K ) ( t =/= u /\ -. v .<_ ( t .\/ u ) /\ Y = ( ( t .\/ u ) .\/ v ) ) ) -> ( X .\/ Y ) = W ) ) |
66 |
16 65
|
mpd |
|- ( ( K e. HL /\ ( X e. P /\ Y e. P /\ W e. V ) /\ ( X .<_ W /\ Y .<_ W /\ X =/= Y ) ) -> ( X .\/ Y ) = W ) |