Metamath Proof Explorer


Theorem 2lt7

Description: 2 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt7
|- 2 < 7

Proof

Step Hyp Ref Expression
1 2lt3
 |-  2 < 3
2 3lt7
 |-  3 < 7
3 2re
 |-  2 e. RR
4 3re
 |-  3 e. RR
5 7re
 |-  7 e. RR
6 3 4 5 lttri
 |-  ( ( 2 < 3 /\ 3 < 7 ) -> 2 < 7 )
7 1 2 6 mp2an
 |-  2 < 7