Metamath Proof Explorer


Theorem 2lt9

Description: 2 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 2lt9
|- 2 < 9

Proof

Step Hyp Ref Expression
1 2lt3
 |-  2 < 3
2 3lt9
 |-  3 < 9
3 2re
 |-  2 e. RR
4 3re
 |-  3 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 2 < 3 /\ 3 < 9 ) -> 2 < 9 )
7 1 2 6 mp2an
 |-  2 < 9