Metamath Proof Explorer


Theorem 2moex

Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2moexv when possible. (Contributed by NM, 3-Dec-2001) (New usage is discouraged.)

Ref Expression
Assertion 2moex
|- ( E* x E. y ph -> A. y E* x ph )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ y E. y ph
2 1 nfmo
 |-  F/ y E* x E. y ph
3 19.8a
 |-  ( ph -> E. y ph )
4 3 moimi
 |-  ( E* x E. y ph -> E* x ph )
5 2 4 alrimi
 |-  ( E* x E. y ph -> A. y E* x ph )