| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2mos.1 |
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
| 2 |
|
2mo |
|- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) ) |
| 3 |
1
|
2sbievw |
|- ( [ z / x ] [ w / y ] ph <-> ps ) |
| 4 |
3
|
anbi2i |
|- ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) ) |
| 5 |
4
|
imbi1i |
|- ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 6 |
5
|
2albii |
|- ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 7 |
6
|
2albii |
|- ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 8 |
2 7
|
bitri |
|- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |