Step |
Hyp |
Ref |
Expression |
1 |
|
2mos.1 |
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
2 |
|
2mo |
|- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) ) |
3 |
|
nfv |
|- F/ y x = z |
4 |
3
|
sbrim |
|- ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> [ w / y ] ph ) ) |
5 |
1
|
expcom |
|- ( y = w -> ( x = z -> ( ph <-> ps ) ) ) |
6 |
5
|
pm5.74d |
|- ( y = w -> ( ( x = z -> ph ) <-> ( x = z -> ps ) ) ) |
7 |
6
|
sbievw |
|- ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> ps ) ) |
8 |
4 7
|
bitr3i |
|- ( ( x = z -> [ w / y ] ph ) <-> ( x = z -> ps ) ) |
9 |
8
|
pm5.74ri |
|- ( x = z -> ( [ w / y ] ph <-> ps ) ) |
10 |
9
|
sbievw |
|- ( [ z / x ] [ w / y ] ph <-> ps ) |
11 |
10
|
anbi2i |
|- ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) ) |
12 |
11
|
imbi1i |
|- ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
13 |
12
|
2albii |
|- ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
14 |
13
|
2albii |
|- ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
15 |
2 14
|
bitri |
|- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |