Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2moswapv when possible. (Contributed by NM, 10-Apr-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2moswap | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfe1 | |- F/ y E. y ph | |
| 2 | 1 | moexex | |- ( ( E* x E. y ph /\ A. x E* y ph ) -> E* y E. x ( E. y ph /\ ph ) ) | 
| 3 | 2 | expcom | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ( E. y ph /\ ph ) ) ) | 
| 4 | 19.8a | |- ( ph -> E. y ph ) | |
| 5 | 4 | pm4.71ri | |- ( ph <-> ( E. y ph /\ ph ) ) | 
| 6 | 5 | exbii | |- ( E. x ph <-> E. x ( E. y ph /\ ph ) ) | 
| 7 | 6 | mobii | |- ( E* y E. x ph <-> E* y E. x ( E. y ph /\ ph ) ) | 
| 8 | 3 7 | imbitrrdi | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) ) |