| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 2 |
|
0red |
|- ( A e. ZZ -> 0 e. RR ) |
| 3 |
1 2
|
leloed |
|- ( A e. ZZ -> ( A <_ 0 <-> ( A < 0 \/ A = 0 ) ) ) |
| 4 |
|
prmnn |
|- ( ( 2 x. A ) e. Prime -> ( 2 x. A ) e. NN ) |
| 5 |
|
nnnn0 |
|- ( ( 2 x. A ) e. NN -> ( 2 x. A ) e. NN0 ) |
| 6 |
|
nn0ge0 |
|- ( ( 2 x. A ) e. NN0 -> 0 <_ ( 2 x. A ) ) |
| 7 |
|
2pos |
|- 0 < 2 |
| 8 |
7
|
a1i |
|- ( A e. ZZ -> 0 < 2 ) |
| 9 |
8
|
anim1i |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 0 < 2 /\ A < 0 ) ) |
| 10 |
9
|
olcd |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
11
|
a1i |
|- ( ( A e. ZZ /\ A < 0 ) -> 2 e. RR ) |
| 13 |
1
|
adantr |
|- ( ( A e. ZZ /\ A < 0 ) -> A e. RR ) |
| 14 |
12 13
|
mul2lt0bi |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) ) |
| 15 |
10 14
|
mpbird |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) < 0 ) |
| 16 |
12 13
|
remulcld |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) e. RR ) |
| 17 |
|
0red |
|- ( ( A e. ZZ /\ A < 0 ) -> 0 e. RR ) |
| 18 |
16 17
|
ltnled |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> -. 0 <_ ( 2 x. A ) ) ) |
| 19 |
15 18
|
mpbid |
|- ( ( A e. ZZ /\ A < 0 ) -> -. 0 <_ ( 2 x. A ) ) |
| 20 |
19
|
ex |
|- ( A e. ZZ -> ( A < 0 -> -. 0 <_ ( 2 x. A ) ) ) |
| 21 |
20
|
con2d |
|- ( A e. ZZ -> ( 0 <_ ( 2 x. A ) -> -. A < 0 ) ) |
| 22 |
21
|
com12 |
|- ( 0 <_ ( 2 x. A ) -> ( A e. ZZ -> -. A < 0 ) ) |
| 23 |
4 5 6 22
|
4syl |
|- ( ( 2 x. A ) e. Prime -> ( A e. ZZ -> -. A < 0 ) ) |
| 24 |
23
|
com12 |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> -. A < 0 ) ) |
| 25 |
24
|
con2d |
|- ( A e. ZZ -> ( A < 0 -> -. ( 2 x. A ) e. Prime ) ) |
| 26 |
25
|
a1dd |
|- ( A e. ZZ -> ( A < 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 27 |
|
oveq2 |
|- ( A = 0 -> ( 2 x. A ) = ( 2 x. 0 ) ) |
| 28 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 29 |
27 28
|
eqtrdi |
|- ( A = 0 -> ( 2 x. A ) = 0 ) |
| 30 |
|
0nprm |
|- -. 0 e. Prime |
| 31 |
30
|
a1i |
|- ( A = 0 -> -. 0 e. Prime ) |
| 32 |
29 31
|
eqneltrd |
|- ( A = 0 -> -. ( 2 x. A ) e. Prime ) |
| 33 |
32
|
a1i13 |
|- ( A e. ZZ -> ( A = 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 34 |
26 33
|
jaod |
|- ( A e. ZZ -> ( ( A < 0 \/ A = 0 ) -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 35 |
3 34
|
sylbid |
|- ( A e. ZZ -> ( A <_ 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 36 |
|
2z |
|- 2 e. ZZ |
| 37 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 38 |
36 37
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 39 |
36
|
a1i |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 e. ZZ ) |
| 40 |
|
simp1 |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ZZ ) |
| 41 |
|
df-ne |
|- ( A =/= 1 <-> -. A = 1 ) |
| 42 |
|
1red |
|- ( A e. ZZ -> 1 e. RR ) |
| 43 |
42 1
|
ltlend |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 <_ A /\ A =/= 1 ) ) ) |
| 44 |
|
1zzd |
|- ( A e. ZZ -> 1 e. ZZ ) |
| 45 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 46 |
44 45
|
mpancom |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 47 |
46
|
biimpd |
|- ( A e. ZZ -> ( 1 < A -> ( 1 + 1 ) <_ A ) ) |
| 48 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 49 |
48
|
breq1i |
|- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
| 50 |
47 49
|
imbitrrdi |
|- ( A e. ZZ -> ( 1 < A -> 2 <_ A ) ) |
| 51 |
43 50
|
sylbird |
|- ( A e. ZZ -> ( ( 1 <_ A /\ A =/= 1 ) -> 2 <_ A ) ) |
| 52 |
51
|
expdimp |
|- ( ( A e. ZZ /\ 1 <_ A ) -> ( A =/= 1 -> 2 <_ A ) ) |
| 53 |
41 52
|
biimtrrid |
|- ( ( A e. ZZ /\ 1 <_ A ) -> ( -. A = 1 -> 2 <_ A ) ) |
| 54 |
53
|
3impia |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 <_ A ) |
| 55 |
|
eluz2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 56 |
39 40 54 55
|
syl3anbrc |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ( ZZ>= ` 2 ) ) |
| 57 |
|
nprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( 2 x. A ) e. Prime ) |
| 58 |
38 56 57
|
sylancr |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> -. ( 2 x. A ) e. Prime ) |
| 59 |
58
|
3exp |
|- ( A e. ZZ -> ( 1 <_ A -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
| 60 |
|
zle0orge1 |
|- ( A e. ZZ -> ( A <_ 0 \/ 1 <_ A ) ) |
| 61 |
35 59 60
|
mpjaod |
|- ( A e. ZZ -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) |
| 62 |
61
|
con4d |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> A = 1 ) ) |
| 63 |
|
oveq2 |
|- ( A = 1 -> ( 2 x. A ) = ( 2 x. 1 ) ) |
| 64 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 65 |
63 64
|
eqtrdi |
|- ( A = 1 -> ( 2 x. A ) = 2 ) |
| 66 |
|
2prm |
|- 2 e. Prime |
| 67 |
65 66
|
eqeltrdi |
|- ( A = 1 -> ( 2 x. A ) e. Prime ) |
| 68 |
62 67
|
impbid1 |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime <-> A = 1 ) ) |