Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
2 |
|
0red |
|- ( A e. ZZ -> 0 e. RR ) |
3 |
1 2
|
leloed |
|- ( A e. ZZ -> ( A <_ 0 <-> ( A < 0 \/ A = 0 ) ) ) |
4 |
|
prmnn |
|- ( ( 2 x. A ) e. Prime -> ( 2 x. A ) e. NN ) |
5 |
|
nnnn0 |
|- ( ( 2 x. A ) e. NN -> ( 2 x. A ) e. NN0 ) |
6 |
|
nn0ge0 |
|- ( ( 2 x. A ) e. NN0 -> 0 <_ ( 2 x. A ) ) |
7 |
|
2pos |
|- 0 < 2 |
8 |
7
|
a1i |
|- ( A e. ZZ -> 0 < 2 ) |
9 |
8
|
anim1i |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 0 < 2 /\ A < 0 ) ) |
10 |
9
|
olcd |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) |
11 |
|
2re |
|- 2 e. RR |
12 |
11
|
a1i |
|- ( ( A e. ZZ /\ A < 0 ) -> 2 e. RR ) |
13 |
1
|
adantr |
|- ( ( A e. ZZ /\ A < 0 ) -> A e. RR ) |
14 |
12 13
|
mul2lt0bi |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> ( ( 2 < 0 /\ 0 < A ) \/ ( 0 < 2 /\ A < 0 ) ) ) ) |
15 |
10 14
|
mpbird |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) < 0 ) |
16 |
12 13
|
remulcld |
|- ( ( A e. ZZ /\ A < 0 ) -> ( 2 x. A ) e. RR ) |
17 |
|
0red |
|- ( ( A e. ZZ /\ A < 0 ) -> 0 e. RR ) |
18 |
16 17
|
ltnled |
|- ( ( A e. ZZ /\ A < 0 ) -> ( ( 2 x. A ) < 0 <-> -. 0 <_ ( 2 x. A ) ) ) |
19 |
15 18
|
mpbid |
|- ( ( A e. ZZ /\ A < 0 ) -> -. 0 <_ ( 2 x. A ) ) |
20 |
19
|
ex |
|- ( A e. ZZ -> ( A < 0 -> -. 0 <_ ( 2 x. A ) ) ) |
21 |
20
|
con2d |
|- ( A e. ZZ -> ( 0 <_ ( 2 x. A ) -> -. A < 0 ) ) |
22 |
21
|
com12 |
|- ( 0 <_ ( 2 x. A ) -> ( A e. ZZ -> -. A < 0 ) ) |
23 |
6 22
|
syl |
|- ( ( 2 x. A ) e. NN0 -> ( A e. ZZ -> -. A < 0 ) ) |
24 |
4 5 23
|
3syl |
|- ( ( 2 x. A ) e. Prime -> ( A e. ZZ -> -. A < 0 ) ) |
25 |
24
|
com12 |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> -. A < 0 ) ) |
26 |
25
|
con2d |
|- ( A e. ZZ -> ( A < 0 -> -. ( 2 x. A ) e. Prime ) ) |
27 |
26
|
a1dd |
|- ( A e. ZZ -> ( A < 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
28 |
|
oveq2 |
|- ( A = 0 -> ( 2 x. A ) = ( 2 x. 0 ) ) |
29 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
30 |
28 29
|
eqtrdi |
|- ( A = 0 -> ( 2 x. A ) = 0 ) |
31 |
|
0nprm |
|- -. 0 e. Prime |
32 |
31
|
a1i |
|- ( A = 0 -> -. 0 e. Prime ) |
33 |
30 32
|
eqneltrd |
|- ( A = 0 -> -. ( 2 x. A ) e. Prime ) |
34 |
33
|
a1i13 |
|- ( A e. ZZ -> ( A = 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
35 |
27 34
|
jaod |
|- ( A e. ZZ -> ( ( A < 0 \/ A = 0 ) -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
36 |
3 35
|
sylbid |
|- ( A e. ZZ -> ( A <_ 0 -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
37 |
|
2z |
|- 2 e. ZZ |
38 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
39 |
37 38
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
40 |
37
|
a1i |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 e. ZZ ) |
41 |
|
simp1 |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ZZ ) |
42 |
|
df-ne |
|- ( A =/= 1 <-> -. A = 1 ) |
43 |
|
1red |
|- ( A e. ZZ -> 1 e. RR ) |
44 |
43 1
|
ltlend |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 <_ A /\ A =/= 1 ) ) ) |
45 |
|
1zzd |
|- ( A e. ZZ -> 1 e. ZZ ) |
46 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
47 |
45 46
|
mpancom |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
48 |
47
|
biimpd |
|- ( A e. ZZ -> ( 1 < A -> ( 1 + 1 ) <_ A ) ) |
49 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
50 |
49
|
breq1i |
|- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
51 |
48 50
|
syl6ibr |
|- ( A e. ZZ -> ( 1 < A -> 2 <_ A ) ) |
52 |
44 51
|
sylbird |
|- ( A e. ZZ -> ( ( 1 <_ A /\ A =/= 1 ) -> 2 <_ A ) ) |
53 |
52
|
expdimp |
|- ( ( A e. ZZ /\ 1 <_ A ) -> ( A =/= 1 -> 2 <_ A ) ) |
54 |
42 53
|
syl5bir |
|- ( ( A e. ZZ /\ 1 <_ A ) -> ( -. A = 1 -> 2 <_ A ) ) |
55 |
54
|
3impia |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> 2 <_ A ) |
56 |
|
eluz2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
57 |
40 41 55 56
|
syl3anbrc |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> A e. ( ZZ>= ` 2 ) ) |
58 |
|
nprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( 2 x. A ) e. Prime ) |
59 |
39 57 58
|
sylancr |
|- ( ( A e. ZZ /\ 1 <_ A /\ -. A = 1 ) -> -. ( 2 x. A ) e. Prime ) |
60 |
59
|
3exp |
|- ( A e. ZZ -> ( 1 <_ A -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) ) |
61 |
|
zle0orge1 |
|- ( A e. ZZ -> ( A <_ 0 \/ 1 <_ A ) ) |
62 |
36 60 61
|
mpjaod |
|- ( A e. ZZ -> ( -. A = 1 -> -. ( 2 x. A ) e. Prime ) ) |
63 |
62
|
con4d |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime -> A = 1 ) ) |
64 |
|
oveq2 |
|- ( A = 1 -> ( 2 x. A ) = ( 2 x. 1 ) ) |
65 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
66 |
64 65
|
eqtrdi |
|- ( A = 1 -> ( 2 x. A ) = 2 ) |
67 |
|
2prm |
|- 2 e. Prime |
68 |
66 67
|
eqeltrdi |
|- ( A = 1 -> ( 2 x. A ) e. Prime ) |
69 |
63 68
|
impbid1 |
|- ( A e. ZZ -> ( ( 2 x. A ) e. Prime <-> A = 1 ) ) |