Step |
Hyp |
Ref |
Expression |
1 |
|
1st2nd2 |
|- ( A e. ( B X. C ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
2 |
1
|
sneqd |
|- ( A e. ( B X. C ) -> { A } = { <. ( 1st ` A ) , ( 2nd ` A ) >. } ) |
3 |
2
|
cnveqd |
|- ( A e. ( B X. C ) -> `' { A } = `' { <. ( 1st ` A ) , ( 2nd ` A ) >. } ) |
4 |
3
|
unieqd |
|- ( A e. ( B X. C ) -> U. `' { A } = U. `' { <. ( 1st ` A ) , ( 2nd ` A ) >. } ) |
5 |
|
opswap |
|- U. `' { <. ( 1st ` A ) , ( 2nd ` A ) >. } = <. ( 2nd ` A ) , ( 1st ` A ) >. |
6 |
4 5
|
eqtrdi |
|- ( A e. ( B X. C ) -> U. `' { A } = <. ( 2nd ` A ) , ( 1st ` A ) >. ) |