| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elvv |  |-  ( A e. ( _V X. _V ) <-> E. w E. v A = <. w , v >. ) | 
						
							| 2 |  | fveq2 |  |-  ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) ) | 
						
							| 3 |  | df-ov |  |-  ( w { <. <. x , y >. , z >. | z = y } v ) = ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) | 
						
							| 4 |  | simpr |  |-  ( ( x = w /\ y = v ) -> y = v ) | 
						
							| 5 |  | mpov |  |-  ( x e. _V , y e. _V |-> y ) = { <. <. x , y >. , z >. | z = y } | 
						
							| 6 | 5 | eqcomi |  |-  { <. <. x , y >. , z >. | z = y } = ( x e. _V , y e. _V |-> y ) | 
						
							| 7 |  | vex |  |-  v e. _V | 
						
							| 8 | 4 6 7 | ovmpoa |  |-  ( ( w e. _V /\ v e. _V ) -> ( w { <. <. x , y >. , z >. | z = y } v ) = v ) | 
						
							| 9 | 8 | el2v |  |-  ( w { <. <. x , y >. , z >. | z = y } v ) = v | 
						
							| 10 | 3 9 | eqtr3i |  |-  ( { <. <. x , y >. , z >. | z = y } ` <. w , v >. ) = v | 
						
							| 11 | 2 10 | eqtrdi |  |-  ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = v ) | 
						
							| 12 |  | vex |  |-  w e. _V | 
						
							| 13 | 12 7 | op2ndd |  |-  ( A = <. w , v >. -> ( 2nd ` A ) = v ) | 
						
							| 14 | 11 13 | eqtr4d |  |-  ( A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) | 
						
							| 15 | 14 | exlimivv |  |-  ( E. w E. v A = <. w , v >. -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) | 
						
							| 16 | 1 15 | sylbi |  |-  ( A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) | 
						
							| 17 |  | vex |  |-  x e. _V | 
						
							| 18 |  | vex |  |-  y e. _V | 
						
							| 19 | 17 18 | pm3.2i |  |-  ( x e. _V /\ y e. _V ) | 
						
							| 20 |  | ax6ev |  |-  E. z z = y | 
						
							| 21 | 19 20 | 2th |  |-  ( ( x e. _V /\ y e. _V ) <-> E. z z = y ) | 
						
							| 22 | 21 | opabbii |  |-  { <. x , y >. | ( x e. _V /\ y e. _V ) } = { <. x , y >. | E. z z = y } | 
						
							| 23 |  | df-xp |  |-  ( _V X. _V ) = { <. x , y >. | ( x e. _V /\ y e. _V ) } | 
						
							| 24 |  | dmoprab |  |-  dom { <. <. x , y >. , z >. | z = y } = { <. x , y >. | E. z z = y } | 
						
							| 25 | 22 23 24 | 3eqtr4ri |  |-  dom { <. <. x , y >. , z >. | z = y } = ( _V X. _V ) | 
						
							| 26 | 25 | eleq2i |  |-  ( A e. dom { <. <. x , y >. , z >. | z = y } <-> A e. ( _V X. _V ) ) | 
						
							| 27 |  | ndmfv |  |-  ( -. A e. dom { <. <. x , y >. , z >. | z = y } -> ( { <. <. x , y >. , z >. | z = y } ` A ) = (/) ) | 
						
							| 28 | 26 27 | sylnbir |  |-  ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = (/) ) | 
						
							| 29 |  | rnsnn0 |  |-  ( A e. ( _V X. _V ) <-> ran { A } =/= (/) ) | 
						
							| 30 | 29 | biimpri |  |-  ( ran { A } =/= (/) -> A e. ( _V X. _V ) ) | 
						
							| 31 | 30 | necon1bi |  |-  ( -. A e. ( _V X. _V ) -> ran { A } = (/) ) | 
						
							| 32 | 31 | unieqd |  |-  ( -. A e. ( _V X. _V ) -> U. ran { A } = U. (/) ) | 
						
							| 33 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( -. A e. ( _V X. _V ) -> U. ran { A } = (/) ) | 
						
							| 35 | 28 34 | eqtr4d |  |-  ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = U. ran { A } ) | 
						
							| 36 |  | 2ndval |  |-  ( 2nd ` A ) = U. ran { A } | 
						
							| 37 | 35 36 | eqtr4di |  |-  ( -. A e. ( _V X. _V ) -> ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) ) | 
						
							| 38 | 16 37 | pm2.61i |  |-  ( { <. <. x , y >. , z >. | z = y } ` A ) = ( 2nd ` A ) |