| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( B e. TopBases /\ B ~<_ _om ) -> B e. TopBases ) | 
						
							| 2 |  | simpr |  |-  ( ( B e. TopBases /\ B ~<_ _om ) -> B ~<_ _om ) | 
						
							| 3 |  | eqidd |  |-  ( ( B e. TopBases /\ B ~<_ _om ) -> ( topGen ` B ) = ( topGen ` B ) ) | 
						
							| 4 |  | breq1 |  |-  ( x = B -> ( x ~<_ _om <-> B ~<_ _om ) ) | 
						
							| 5 |  | fveqeq2 |  |-  ( x = B -> ( ( topGen ` x ) = ( topGen ` B ) <-> ( topGen ` B ) = ( topGen ` B ) ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( x = B -> ( ( x ~<_ _om /\ ( topGen ` x ) = ( topGen ` B ) ) <-> ( B ~<_ _om /\ ( topGen ` B ) = ( topGen ` B ) ) ) ) | 
						
							| 7 | 6 | rspcev |  |-  ( ( B e. TopBases /\ ( B ~<_ _om /\ ( topGen ` B ) = ( topGen ` B ) ) ) -> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = ( topGen ` B ) ) ) | 
						
							| 8 | 1 2 3 7 | syl12anc |  |-  ( ( B e. TopBases /\ B ~<_ _om ) -> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = ( topGen ` B ) ) ) | 
						
							| 9 |  | is2ndc |  |-  ( ( topGen ` B ) e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = ( topGen ` B ) ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( B e. TopBases /\ B ~<_ _om ) -> ( topGen ` B ) e. 2ndc ) |