| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2ndcomap.2 | 
							 |-  Y = U. K  | 
						
						
							| 2 | 
							
								
							 | 
							2ndcomap.3 | 
							 |-  ( ph -> J e. 2ndc )  | 
						
						
							| 3 | 
							
								
							 | 
							2ndcomap.5 | 
							 |-  ( ph -> F e. ( J Cn K ) )  | 
						
						
							| 4 | 
							
								
							 | 
							2ndcomap.6 | 
							 |-  ( ph -> ran F = Y )  | 
						
						
							| 5 | 
							
								
							 | 
							2ndcomap.7 | 
							 |-  ( ( ph /\ x e. J ) -> ( F " x ) e. K )  | 
						
						
							| 6 | 
							
								
							 | 
							cntop2 | 
							 |-  ( F e. ( J Cn K ) -> K e. Top )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							syl | 
							 |-  ( ph -> K e. Top )  | 
						
						
							| 8 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. Top )  | 
						
						
							| 9 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ph )  | 
						
						
							| 10 | 
							
								
							 | 
							bastg | 
							 |-  ( b e. TopBases -> b C_ ( topGen ` b ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ ( topGen ` b ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` b ) = J )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sseqtrd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b C_ J )  | 
						
						
							| 14 | 
							
								13
							 | 
							sselda | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> x e. J )  | 
						
						
							| 15 | 
							
								9 14 5
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ x e. b ) -> ( F " x ) e. K )  | 
						
						
							| 16 | 
							
								15
							 | 
							fmpttd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b --> K )  | 
						
						
							| 17 | 
							
								16
							 | 
							frnd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) C_ K )  | 
						
						
							| 18 | 
							
								
							 | 
							elunii | 
							 |-  ( ( z e. k /\ k e. K ) -> z e. U. K )  | 
						
						
							| 19 | 
							
								18 1
							 | 
							eleqtrrdi | 
							 |-  ( ( z e. k /\ k e. K ) -> z e. Y )  | 
						
						
							| 20 | 
							
								19
							 | 
							ancoms | 
							 |-  ( ( k e. K /\ z e. k ) -> z e. Y )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. Y )  | 
						
						
							| 22 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ran F = Y )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> z e. ran F )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  U. J = U. J  | 
						
						
							| 25 | 
							
								24 1
							 | 
							cnf | 
							 |-  ( F e. ( J Cn K ) -> F : U. J --> Y )  | 
						
						
							| 26 | 
							
								3 25
							 | 
							syl | 
							 |-  ( ph -> F : U. J --> Y )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F : U. J --> Y )  | 
						
						
							| 28 | 
							
								
							 | 
							ffn | 
							 |-  ( F : U. J --> Y -> F Fn U. J )  | 
						
						
							| 29 | 
							
								
							 | 
							fvelrnb | 
							 |-  ( F Fn U. J -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							3syl | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> ( z e. ran F <-> E. t e. U. J ( F ` t ) = z ) )  | 
						
						
							| 31 | 
							
								23 30
							 | 
							mpbid | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. t e. U. J ( F ` t ) = z )  | 
						
						
							| 32 | 
							
								3
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F e. ( J Cn K ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprll | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> k e. K )  | 
						
						
							| 34 | 
							
								
							 | 
							cnima | 
							 |-  ( ( F e. ( J Cn K ) /\ k e. K ) -> ( `' F " k ) e. J )  | 
						
						
							| 35 | 
							
								32 33 34
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. J )  | 
						
						
							| 36 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( topGen ` b ) = J )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( `' F " k ) e. ( topGen ` b ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. U. J )  | 
						
						
							| 39 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) = z )  | 
						
						
							| 40 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> z e. k )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( F ` t ) e. k )  | 
						
						
							| 42 | 
							
								27
							 | 
							ffnd | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> F Fn U. J )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantrr | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> F Fn U. J )  | 
						
						
							| 44 | 
							
								
							 | 
							elpreima | 
							 |-  ( F Fn U. J -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> ( t e. ( `' F " k ) <-> ( t e. U. J /\ ( F ` t ) e. k ) ) )  | 
						
						
							| 46 | 
							
								38 41 45
							 | 
							mpbir2and | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> t e. ( `' F " k ) )  | 
						
						
							| 47 | 
							
								
							 | 
							tg2 | 
							 |-  ( ( ( `' F " k ) e. ( topGen ` b ) /\ t e. ( `' F " k ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) )  | 
						
						
							| 48 | 
							
								37 46 47
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. m e. b ( t e. m /\ m C_ ( `' F " k ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m e. b )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							 |-  ( F " m ) = ( F " m )  | 
						
						
							| 51 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( x = m -> ( F " x ) = ( F " m ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							rspceeqv | 
							 |-  ( ( m e. b /\ ( F " m ) = ( F " m ) ) -> E. x e. b ( F " m ) = ( F " x ) )  | 
						
						
							| 53 | 
							
								49 50 52
							 | 
							sylancl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. x e. b ( F " m ) = ( F " x ) )  | 
						
						
							| 54 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> F Fn U. J )  | 
						
						
							| 55 | 
							
								
							 | 
							fnfun | 
							 |-  ( F Fn U. J -> Fun F )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							syl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> Fun F )  | 
						
						
							| 57 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ ( `' F " k ) )  | 
						
						
							| 58 | 
							
								
							 | 
							funimass2 | 
							 |-  ( ( Fun F /\ m C_ ( `' F " k ) ) -> ( F " m ) C_ k )  | 
						
						
							| 59 | 
							
								56 57 58
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) C_ k )  | 
						
						
							| 60 | 
							
								
							 | 
							vex | 
							 |-  k e. _V  | 
						
						
							| 61 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( ( F " m ) C_ k /\ k e. _V ) -> ( F " m ) e. _V )  | 
						
						
							| 62 | 
							
								59 60 61
							 | 
							sylancl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. _V )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. b |-> ( F " x ) ) = ( x e. b |-> ( F " x ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							elrnmpt | 
							 |-  ( ( F " m ) e. _V -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							syl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) <-> E. x e. b ( F " m ) = ( F " x ) ) )  | 
						
						
							| 66 | 
							
								53 65
							 | 
							mpbird | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F " m ) e. ran ( x e. b |-> ( F " x ) ) )  | 
						
						
							| 67 | 
							
								39
							 | 
							adantr | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) = z )  | 
						
						
							| 68 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> t e. m )  | 
						
						
							| 69 | 
							
								
							 | 
							cnvimass | 
							 |-  ( `' F " k ) C_ dom F  | 
						
						
							| 70 | 
							
								57 69
							 | 
							sstrdi | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> m C_ dom F )  | 
						
						
							| 71 | 
							
								
							 | 
							funfvima2 | 
							 |-  ( ( Fun F /\ m C_ dom F ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) )  | 
						
						
							| 72 | 
							
								56 70 71
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( t e. m -> ( F ` t ) e. ( F " m ) ) )  | 
						
						
							| 73 | 
							
								68 72
							 | 
							mpd | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> ( F ` t ) e. ( F " m ) )  | 
						
						
							| 74 | 
							
								67 73
							 | 
							eqeltrrd | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> z e. ( F " m ) )  | 
						
						
							| 75 | 
							
								
							 | 
							eleq2 | 
							 |-  ( w = ( F " m ) -> ( z e. w <-> z e. ( F " m ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							sseq1 | 
							 |-  ( w = ( F " m ) -> ( w C_ k <-> ( F " m ) C_ k ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							anbi12d | 
							 |-  ( w = ( F " m ) -> ( ( z e. w /\ w C_ k ) <-> ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							rspcev | 
							 |-  ( ( ( F " m ) e. ran ( x e. b |-> ( F " x ) ) /\ ( z e. ( F " m ) /\ ( F " m ) C_ k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 79 | 
							
								66 74 59 78
							 | 
							syl12anc | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) /\ ( m e. b /\ ( t e. m /\ m C_ ( `' F " k ) ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 80 | 
							
								48 79
							 | 
							rexlimddv | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( ( k e. K /\ z e. k ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							anassrs | 
							 |-  ( ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) /\ ( t e. U. J /\ ( F ` t ) = z ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 82 | 
							
								31 81
							 | 
							rexlimddv | 
							 |-  ( ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) /\ ( k e. K /\ z e. k ) ) -> E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							ralrimivva | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) )  | 
						
						
							| 84 | 
							
								
							 | 
							basgen2 | 
							 |-  ( ( K e. Top /\ ran ( x e. b |-> ( F " x ) ) C_ K /\ A. k e. K A. z e. k E. w e. ran ( x e. b |-> ( F " x ) ) ( z e. w /\ w C_ k ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K )  | 
						
						
							| 85 | 
							
								8 17 83 84
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) = K )  | 
						
						
							| 86 | 
							
								85 8
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top )  | 
						
						
							| 87 | 
							
								
							 | 
							tgclb | 
							 |-  ( ran ( x e. b |-> ( F " x ) ) e. TopBases <-> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. Top )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							sylibr | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) e. TopBases )  | 
						
						
							| 89 | 
							
								
							 | 
							omelon | 
							 |-  _om e. On  | 
						
						
							| 90 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b ~<_ _om )  | 
						
						
							| 91 | 
							
								
							 | 
							ondomen | 
							 |-  ( ( _om e. On /\ b ~<_ _om ) -> b e. dom card )  | 
						
						
							| 92 | 
							
								89 90 91
							 | 
							sylancr | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> b e. dom card )  | 
						
						
							| 93 | 
							
								16
							 | 
							ffnd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) Fn b )  | 
						
						
							| 94 | 
							
								
							 | 
							dffn4 | 
							 |-  ( ( x e. b |-> ( F " x ) ) Fn b <-> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							sylib | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							fodomnum | 
							 |-  ( b e. dom card -> ( ( x e. b |-> ( F " x ) ) : b -onto-> ran ( x e. b |-> ( F " x ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b ) )  | 
						
						
							| 97 | 
							
								92 95 96
							 | 
							sylc | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ b )  | 
						
						
							| 98 | 
							
								
							 | 
							domtr | 
							 |-  ( ( ran ( x e. b |-> ( F " x ) ) ~<_ b /\ b ~<_ _om ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om )  | 
						
						
							| 99 | 
							
								97 90 98
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ran ( x e. b |-> ( F " x ) ) ~<_ _om )  | 
						
						
							| 100 | 
							
								
							 | 
							2ndci | 
							 |-  ( ( ran ( x e. b |-> ( F " x ) ) e. TopBases /\ ran ( x e. b |-> ( F " x ) ) ~<_ _om ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc )  | 
						
						
							| 101 | 
							
								88 99 100
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> ( topGen ` ran ( x e. b |-> ( F " x ) ) ) e. 2ndc )  | 
						
						
							| 102 | 
							
								85 101
							 | 
							eqeltrrd | 
							 |-  ( ( ( ph /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = J ) ) -> K e. 2ndc )  | 
						
						
							| 103 | 
							
								
							 | 
							is2ndc | 
							 |-  ( J e. 2ndc <-> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) )  | 
						
						
							| 104 | 
							
								2 103
							 | 
							sylib | 
							 |-  ( ph -> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = J ) )  | 
						
						
							| 105 | 
							
								102 104
							 | 
							r19.29a | 
							 |-  ( ph -> K e. 2ndc )  |