| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc |  |-  ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) | 
						
							| 2 |  | tgdom |  |-  ( x e. TopBases -> ( topGen ` x ) ~<_ ~P x ) | 
						
							| 3 |  | simpr |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> x ~<_ _om ) | 
						
							| 4 |  | nnenom |  |-  NN ~~ _om | 
						
							| 5 | 4 | ensymi |  |-  _om ~~ NN | 
						
							| 6 |  | domentr |  |-  ( ( x ~<_ _om /\ _om ~~ NN ) -> x ~<_ NN ) | 
						
							| 7 | 3 5 6 | sylancl |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> x ~<_ NN ) | 
						
							| 8 |  | pwdom |  |-  ( x ~<_ NN -> ~P x ~<_ ~P NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> ~P x ~<_ ~P NN ) | 
						
							| 10 |  | rpnnen |  |-  RR ~~ ~P NN | 
						
							| 11 | 10 | ensymi |  |-  ~P NN ~~ RR | 
						
							| 12 |  | domentr |  |-  ( ( ~P x ~<_ ~P NN /\ ~P NN ~~ RR ) -> ~P x ~<_ RR ) | 
						
							| 13 | 9 11 12 | sylancl |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> ~P x ~<_ RR ) | 
						
							| 14 |  | domtr |  |-  ( ( ( topGen ` x ) ~<_ ~P x /\ ~P x ~<_ RR ) -> ( topGen ` x ) ~<_ RR ) | 
						
							| 15 | 2 13 14 | syl2an2r |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> ( topGen ` x ) ~<_ RR ) | 
						
							| 16 |  | breq1 |  |-  ( ( topGen ` x ) = J -> ( ( topGen ` x ) ~<_ RR <-> J ~<_ RR ) ) | 
						
							| 17 | 15 16 | syl5ibcom |  |-  ( ( x e. TopBases /\ x ~<_ _om ) -> ( ( topGen ` x ) = J -> J ~<_ RR ) ) | 
						
							| 18 | 17 | expimpd |  |-  ( x e. TopBases -> ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J ~<_ RR ) ) | 
						
							| 19 | 18 | rexlimiv |  |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J ~<_ RR ) | 
						
							| 20 | 1 19 | sylbi |  |-  ( J e. 2ndc -> J ~<_ RR ) |