Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
|- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
2 |
|
tgdom |
|- ( x e. TopBases -> ( topGen ` x ) ~<_ ~P x ) |
3 |
|
simpr |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> x ~<_ _om ) |
4 |
|
nnenom |
|- NN ~~ _om |
5 |
4
|
ensymi |
|- _om ~~ NN |
6 |
|
domentr |
|- ( ( x ~<_ _om /\ _om ~~ NN ) -> x ~<_ NN ) |
7 |
3 5 6
|
sylancl |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> x ~<_ NN ) |
8 |
|
pwdom |
|- ( x ~<_ NN -> ~P x ~<_ ~P NN ) |
9 |
7 8
|
syl |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> ~P x ~<_ ~P NN ) |
10 |
|
rpnnen |
|- RR ~~ ~P NN |
11 |
10
|
ensymi |
|- ~P NN ~~ RR |
12 |
|
domentr |
|- ( ( ~P x ~<_ ~P NN /\ ~P NN ~~ RR ) -> ~P x ~<_ RR ) |
13 |
9 11 12
|
sylancl |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> ~P x ~<_ RR ) |
14 |
|
domtr |
|- ( ( ( topGen ` x ) ~<_ ~P x /\ ~P x ~<_ RR ) -> ( topGen ` x ) ~<_ RR ) |
15 |
2 13 14
|
syl2an2r |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> ( topGen ` x ) ~<_ RR ) |
16 |
|
breq1 |
|- ( ( topGen ` x ) = J -> ( ( topGen ` x ) ~<_ RR <-> J ~<_ RR ) ) |
17 |
15 16
|
syl5ibcom |
|- ( ( x e. TopBases /\ x ~<_ _om ) -> ( ( topGen ` x ) = J -> J ~<_ RR ) ) |
18 |
17
|
expimpd |
|- ( x e. TopBases -> ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J ~<_ RR ) ) |
19 |
18
|
rexlimiv |
|- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J ~<_ RR ) |
20 |
1 19
|
sylbi |
|- ( J e. 2ndc -> J ~<_ RR ) |