| Step |
Hyp |
Ref |
Expression |
| 1 |
|
is2ndc |
|- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
| 2 |
|
simplr |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> x e. TopBases ) |
| 3 |
|
simpll |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> A e. V ) |
| 4 |
|
tgrest |
|- ( ( x e. TopBases /\ A e. V ) -> ( topGen ` ( x |`t A ) ) = ( ( topGen ` x ) |`t A ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( topGen ` ( x |`t A ) ) = ( ( topGen ` x ) |`t A ) ) |
| 6 |
|
restbas |
|- ( x e. TopBases -> ( x |`t A ) e. TopBases ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) e. TopBases ) |
| 8 |
|
restval |
|- ( ( x e. TopBases /\ A e. V ) -> ( x |`t A ) = ran ( y e. x |-> ( y i^i A ) ) ) |
| 9 |
2 3 8
|
syl2anc |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) = ran ( y e. x |-> ( y i^i A ) ) ) |
| 10 |
|
1stcrestlem |
|- ( x ~<_ _om -> ran ( y e. x |-> ( y i^i A ) ) ~<_ _om ) |
| 11 |
10
|
adantl |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ran ( y e. x |-> ( y i^i A ) ) ~<_ _om ) |
| 12 |
9 11
|
eqbrtrd |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( x |`t A ) ~<_ _om ) |
| 13 |
|
2ndci |
|- ( ( ( x |`t A ) e. TopBases /\ ( x |`t A ) ~<_ _om ) -> ( topGen ` ( x |`t A ) ) e. 2ndc ) |
| 14 |
7 12 13
|
syl2anc |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( topGen ` ( x |`t A ) ) e. 2ndc ) |
| 15 |
5 14
|
eqeltrrd |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( ( topGen ` x ) |`t A ) e. 2ndc ) |
| 16 |
|
oveq1 |
|- ( ( topGen ` x ) = J -> ( ( topGen ` x ) |`t A ) = ( J |`t A ) ) |
| 17 |
16
|
eleq1d |
|- ( ( topGen ` x ) = J -> ( ( ( topGen ` x ) |`t A ) e. 2ndc <-> ( J |`t A ) e. 2ndc ) ) |
| 18 |
15 17
|
syl5ibcom |
|- ( ( ( A e. V /\ x e. TopBases ) /\ x ~<_ _om ) -> ( ( topGen ` x ) = J -> ( J |`t A ) e. 2ndc ) ) |
| 19 |
18
|
expimpd |
|- ( ( A e. V /\ x e. TopBases ) -> ( ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( J |`t A ) e. 2ndc ) ) |
| 20 |
19
|
rexlimdva |
|- ( A e. V -> ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> ( J |`t A ) e. 2ndc ) ) |
| 21 |
1 20
|
biimtrid |
|- ( A e. V -> ( J e. 2ndc -> ( J |`t A ) e. 2ndc ) ) |
| 22 |
21
|
impcom |
|- ( ( J e. 2ndc /\ A e. V ) -> ( J |`t A ) e. 2ndc ) |