Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
|- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
2 |
|
df-rex |
|- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) <-> E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
3 |
|
simprl |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x ~<_ _om ) |
4 |
|
ssfii |
|- ( x e. TopBases -> x C_ ( fi ` x ) ) |
5 |
|
fvex |
|- ( topGen ` x ) e. _V |
6 |
|
bastg |
|- ( x e. TopBases -> x C_ ( topGen ` x ) ) |
7 |
6
|
adantr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x C_ ( topGen ` x ) ) |
8 |
|
fiss |
|- ( ( ( topGen ` x ) e. _V /\ x C_ ( topGen ` x ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) |
9 |
5 7 8
|
sylancr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) |
10 |
|
tgcl |
|- ( x e. TopBases -> ( topGen ` x ) e. Top ) |
11 |
10
|
adantr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) |
12 |
|
fitop |
|- ( ( topGen ` x ) e. Top -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) |
13 |
11 12
|
syl |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) |
14 |
9 13
|
sseqtrd |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( topGen ` x ) ) |
15 |
|
2basgen |
|- ( ( x C_ ( fi ` x ) /\ ( fi ` x ) C_ ( topGen ` x ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) |
16 |
4 14 15
|
syl2an2r |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) |
17 |
|
simprr |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) |
18 |
16 17
|
eqtr3d |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` ( fi ` x ) ) = J ) |
19 |
3 18
|
jca |
|- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
20 |
19
|
eximi |
|- ( E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
21 |
2 20
|
sylbi |
|- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
22 |
1 21
|
sylbi |
|- ( J e. 2ndc -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
23 |
|
fibas |
|- ( fi ` x ) e. TopBases |
24 |
|
simpl |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> x ~<_ _om ) |
25 |
|
fictb |
|- ( x e. _V -> ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) |
26 |
25
|
elv |
|- ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) |
27 |
24 26
|
sylib |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( fi ` x ) ~<_ _om ) |
28 |
|
simpr |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( topGen ` ( fi ` x ) ) = J ) |
29 |
27 28
|
jca |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
30 |
|
breq1 |
|- ( y = ( fi ` x ) -> ( y ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) |
31 |
|
fveqeq2 |
|- ( y = ( fi ` x ) -> ( ( topGen ` y ) = J <-> ( topGen ` ( fi ` x ) ) = J ) ) |
32 |
30 31
|
anbi12d |
|- ( y = ( fi ` x ) -> ( ( y ~<_ _om /\ ( topGen ` y ) = J ) <-> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) ) |
33 |
32
|
rspcev |
|- ( ( ( fi ` x ) e. TopBases /\ ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
34 |
23 29 33
|
sylancr |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
35 |
|
is2ndc |
|- ( J e. 2ndc <-> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
36 |
34 35
|
sylibr |
|- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) |
37 |
36
|
exlimiv |
|- ( E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) |
38 |
22 37
|
impbii |
|- ( J e. 2ndc <-> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |