| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc |  |-  ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) | 
						
							| 2 |  | df-rex |  |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) <-> E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) | 
						
							| 3 |  | simprl |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x ~<_ _om ) | 
						
							| 4 |  | ssfii |  |-  ( x e. TopBases -> x C_ ( fi ` x ) ) | 
						
							| 5 |  | fvex |  |-  ( topGen ` x ) e. _V | 
						
							| 6 |  | bastg |  |-  ( x e. TopBases -> x C_ ( topGen ` x ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x C_ ( topGen ` x ) ) | 
						
							| 8 |  | fiss |  |-  ( ( ( topGen ` x ) e. _V /\ x C_ ( topGen ` x ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) | 
						
							| 10 |  | tgcl |  |-  ( x e. TopBases -> ( topGen ` x ) e. Top ) | 
						
							| 11 | 10 | adantr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) | 
						
							| 12 |  | fitop |  |-  ( ( topGen ` x ) e. Top -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) | 
						
							| 14 | 9 13 | sseqtrd |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( topGen ` x ) ) | 
						
							| 15 |  | 2basgen |  |-  ( ( x C_ ( fi ` x ) /\ ( fi ` x ) C_ ( topGen ` x ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) | 
						
							| 16 | 4 14 15 | syl2an2r |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) | 
						
							| 17 |  | simprr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) | 
						
							| 18 | 16 17 | eqtr3d |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` ( fi ` x ) ) = J ) | 
						
							| 19 | 3 18 | jca |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 20 | 19 | eximi |  |-  ( E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 21 | 2 20 | sylbi |  |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 22 | 1 21 | sylbi |  |-  ( J e. 2ndc -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 23 |  | fibas |  |-  ( fi ` x ) e. TopBases | 
						
							| 24 |  | simpl |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> x ~<_ _om ) | 
						
							| 25 |  | fictb |  |-  ( x e. _V -> ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) | 
						
							| 26 | 25 | elv |  |-  ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) | 
						
							| 27 | 24 26 | sylib |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( fi ` x ) ~<_ _om ) | 
						
							| 28 |  | simpr |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( topGen ` ( fi ` x ) ) = J ) | 
						
							| 29 | 27 28 | jca |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 30 |  | breq1 |  |-  ( y = ( fi ` x ) -> ( y ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( y = ( fi ` x ) -> ( ( topGen ` y ) = J <-> ( topGen ` ( fi ` x ) ) = J ) ) | 
						
							| 32 | 30 31 | anbi12d |  |-  ( y = ( fi ` x ) -> ( ( y ~<_ _om /\ ( topGen ` y ) = J ) <-> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) ) | 
						
							| 33 | 32 | rspcev |  |-  ( ( ( fi ` x ) e. TopBases /\ ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) | 
						
							| 34 | 23 29 33 | sylancr |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) | 
						
							| 35 |  | is2ndc |  |-  ( J e. 2ndc <-> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) | 
						
							| 36 | 34 35 | sylibr |  |-  ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) | 
						
							| 37 | 36 | exlimiv |  |-  ( E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) | 
						
							| 38 | 22 37 | impbii |  |-  ( J e. 2ndc <-> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |