| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc |  |-  ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) | 
						
							| 2 |  | simprr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) | 
						
							| 3 |  | tgcl |  |-  ( x e. TopBases -> ( topGen ` x ) e. Top ) | 
						
							| 4 | 3 | adantr |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) | 
						
							| 5 | 2 4 | eqeltrrd |  |-  ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> J e. Top ) | 
						
							| 6 | 5 | rexlimiva |  |-  ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> J e. Top ) | 
						
							| 7 | 1 6 | sylbi |  |-  ( J e. 2ndc -> J e. Top ) |