Step |
Hyp |
Ref |
Expression |
1 |
|
df-inl |
|- inl = ( x e. _V |-> <. (/) , x >. ) |
2 |
|
opeq2 |
|- ( x = X -> <. (/) , x >. = <. (/) , X >. ) |
3 |
|
elex |
|- ( X e. V -> X e. _V ) |
4 |
|
opex |
|- <. (/) , X >. e. _V |
5 |
4
|
a1i |
|- ( X e. V -> <. (/) , X >. e. _V ) |
6 |
1 2 3 5
|
fvmptd3 |
|- ( X e. V -> ( inl ` X ) = <. (/) , X >. ) |
7 |
6
|
fveq2d |
|- ( X e. V -> ( 2nd ` ( inl ` X ) ) = ( 2nd ` <. (/) , X >. ) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
|
op2ndg |
|- ( ( (/) e. _V /\ X e. V ) -> ( 2nd ` <. (/) , X >. ) = X ) |
10 |
8 9
|
mpan |
|- ( X e. V -> ( 2nd ` <. (/) , X >. ) = X ) |
11 |
7 10
|
eqtrd |
|- ( X e. V -> ( 2nd ` ( inl ` X ) ) = X ) |