Metamath Proof Explorer


Theorem 2ndinr

Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022)

Ref Expression
Assertion 2ndinr
|- ( X e. V -> ( 2nd ` ( inr ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 df-inr
 |-  inr = ( x e. _V |-> <. 1o , x >. )
2 opeq2
 |-  ( x = X -> <. 1o , x >. = <. 1o , X >. )
3 elex
 |-  ( X e. V -> X e. _V )
4 opex
 |-  <. 1o , X >. e. _V
5 4 a1i
 |-  ( X e. V -> <. 1o , X >. e. _V )
6 1 2 3 5 fvmptd3
 |-  ( X e. V -> ( inr ` X ) = <. 1o , X >. )
7 6 fveq2d
 |-  ( X e. V -> ( 2nd ` ( inr ` X ) ) = ( 2nd ` <. 1o , X >. ) )
8 1oex
 |-  1o e. _V
9 op2ndg
 |-  ( ( 1o e. _V /\ X e. V ) -> ( 2nd ` <. 1o , X >. ) = X )
10 8 9 mpan
 |-  ( X e. V -> ( 2nd ` <. 1o , X >. ) = X )
11 7 10 eqtrd
 |-  ( X e. V -> ( 2nd ` ( inr ` X ) ) = X )