Metamath Proof Explorer


Theorem 2ndnpr

Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion 2ndnpr
|- ( -. A e. ( _V X. _V ) -> ( 2nd ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 2ndval
 |-  ( 2nd ` A ) = U. ran { A }
2 rnsnn0
 |-  ( A e. ( _V X. _V ) <-> ran { A } =/= (/) )
3 2 biimpri
 |-  ( ran { A } =/= (/) -> A e. ( _V X. _V ) )
4 3 necon1bi
 |-  ( -. A e. ( _V X. _V ) -> ran { A } = (/) )
5 4 unieqd
 |-  ( -. A e. ( _V X. _V ) -> U. ran { A } = U. (/) )
6 uni0
 |-  U. (/) = (/)
7 5 6 eqtrdi
 |-  ( -. A e. ( _V X. _V ) -> U. ran { A } = (/) )
8 1 7 eqtrid
 |-  ( -. A e. ( _V X. _V ) -> ( 2nd ` A ) = (/) )