Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
2 |
1
|
rneqd |
|- ( x = A -> ran { x } = ran { A } ) |
3 |
2
|
unieqd |
|- ( x = A -> U. ran { x } = U. ran { A } ) |
4 |
|
df-2nd |
|- 2nd = ( x e. _V |-> U. ran { x } ) |
5 |
|
snex |
|- { A } e. _V |
6 |
5
|
rnex |
|- ran { A } e. _V |
7 |
6
|
uniex |
|- U. ran { A } e. _V |
8 |
3 4 7
|
fvmpt |
|- ( A e. _V -> ( 2nd ` A ) = U. ran { A } ) |
9 |
|
fvprc |
|- ( -. A e. _V -> ( 2nd ` A ) = (/) ) |
10 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
11 |
10
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
12 |
11
|
rneqd |
|- ( -. A e. _V -> ran { A } = ran (/) ) |
13 |
|
rn0 |
|- ran (/) = (/) |
14 |
12 13
|
eqtrdi |
|- ( -. A e. _V -> ran { A } = (/) ) |
15 |
14
|
unieqd |
|- ( -. A e. _V -> U. ran { A } = U. (/) ) |
16 |
|
uni0 |
|- U. (/) = (/) |
17 |
15 16
|
eqtrdi |
|- ( -. A e. _V -> U. ran { A } = (/) ) |
18 |
9 17
|
eqtr4d |
|- ( -. A e. _V -> ( 2nd ` A ) = U. ran { A } ) |
19 |
8 18
|
pm2.61i |
|- ( 2nd ` A ) = U. ran { A } |