| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0ind.1 |
|- ps |
| 2 |
|
2nn0ind.2 |
|- ch |
| 3 |
|
2nn0ind.3 |
|- ( y e. NN -> ( ( th /\ ta ) -> et ) ) |
| 4 |
|
2nn0ind.4 |
|- ( x = 0 -> ( ph <-> ps ) ) |
| 5 |
|
2nn0ind.5 |
|- ( x = 1 -> ( ph <-> ch ) ) |
| 6 |
|
2nn0ind.6 |
|- ( x = ( y - 1 ) -> ( ph <-> th ) ) |
| 7 |
|
2nn0ind.7 |
|- ( x = y -> ( ph <-> ta ) ) |
| 8 |
|
2nn0ind.8 |
|- ( x = ( y + 1 ) -> ( ph <-> et ) ) |
| 9 |
|
2nn0ind.9 |
|- ( x = A -> ( ph <-> rh ) ) |
| 10 |
|
nn0p1nn |
|- ( A e. NN0 -> ( A + 1 ) e. NN ) |
| 11 |
|
oveq1 |
|- ( a = 1 -> ( a - 1 ) = ( 1 - 1 ) ) |
| 12 |
11
|
sbceq1d |
|- ( a = 1 -> ( [. ( a - 1 ) / x ]. ph <-> [. ( 1 - 1 ) / x ]. ph ) ) |
| 13 |
|
dfsbcq |
|- ( a = 1 -> ( [. a / x ]. ph <-> [. 1 / x ]. ph ) ) |
| 14 |
12 13
|
anbi12d |
|- ( a = 1 -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( 1 - 1 ) / x ]. ph /\ [. 1 / x ]. ph ) ) ) |
| 15 |
|
oveq1 |
|- ( a = y -> ( a - 1 ) = ( y - 1 ) ) |
| 16 |
15
|
sbceq1d |
|- ( a = y -> ( [. ( a - 1 ) / x ]. ph <-> [. ( y - 1 ) / x ]. ph ) ) |
| 17 |
|
dfsbcq |
|- ( a = y -> ( [. a / x ]. ph <-> [. y / x ]. ph ) ) |
| 18 |
16 17
|
anbi12d |
|- ( a = y -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) ) |
| 19 |
|
oveq1 |
|- ( a = ( y + 1 ) -> ( a - 1 ) = ( ( y + 1 ) - 1 ) ) |
| 20 |
19
|
sbceq1d |
|- ( a = ( y + 1 ) -> ( [. ( a - 1 ) / x ]. ph <-> [. ( ( y + 1 ) - 1 ) / x ]. ph ) ) |
| 21 |
|
dfsbcq |
|- ( a = ( y + 1 ) -> ( [. a / x ]. ph <-> [. ( y + 1 ) / x ]. ph ) ) |
| 22 |
20 21
|
anbi12d |
|- ( a = ( y + 1 ) -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) ) |
| 23 |
|
oveq1 |
|- ( a = ( A + 1 ) -> ( a - 1 ) = ( ( A + 1 ) - 1 ) ) |
| 24 |
23
|
sbceq1d |
|- ( a = ( A + 1 ) -> ( [. ( a - 1 ) / x ]. ph <-> [. ( ( A + 1 ) - 1 ) / x ]. ph ) ) |
| 25 |
|
dfsbcq |
|- ( a = ( A + 1 ) -> ( [. a / x ]. ph <-> [. ( A + 1 ) / x ]. ph ) ) |
| 26 |
24 25
|
anbi12d |
|- ( a = ( A + 1 ) -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) ) |
| 27 |
|
ovex |
|- ( 1 - 1 ) e. _V |
| 28 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 29 |
28
|
eqeq2i |
|- ( x = ( 1 - 1 ) <-> x = 0 ) |
| 30 |
29 4
|
sylbi |
|- ( x = ( 1 - 1 ) -> ( ph <-> ps ) ) |
| 31 |
27 30
|
sbcie |
|- ( [. ( 1 - 1 ) / x ]. ph <-> ps ) |
| 32 |
1 31
|
mpbir |
|- [. ( 1 - 1 ) / x ]. ph |
| 33 |
|
1ex |
|- 1 e. _V |
| 34 |
33 5
|
sbcie |
|- ( [. 1 / x ]. ph <-> ch ) |
| 35 |
2 34
|
mpbir |
|- [. 1 / x ]. ph |
| 36 |
32 35
|
pm3.2i |
|- ( [. ( 1 - 1 ) / x ]. ph /\ [. 1 / x ]. ph ) |
| 37 |
|
simprr |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. y / x ]. ph ) |
| 38 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 39 |
|
ax-1cn |
|- 1 e. CC |
| 40 |
|
pncan |
|- ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y ) |
| 41 |
38 39 40
|
sylancl |
|- ( y e. NN -> ( ( y + 1 ) - 1 ) = y ) |
| 42 |
41
|
adantr |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( ( y + 1 ) - 1 ) = y ) |
| 43 |
42
|
sbceq1d |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph <-> [. y / x ]. ph ) ) |
| 44 |
37 43
|
mpbird |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. ( ( y + 1 ) - 1 ) / x ]. ph ) |
| 45 |
|
ovex |
|- ( y - 1 ) e. _V |
| 46 |
45 6
|
sbcie |
|- ( [. ( y - 1 ) / x ]. ph <-> th ) |
| 47 |
|
vex |
|- y e. _V |
| 48 |
47 7
|
sbcie |
|- ( [. y / x ]. ph <-> ta ) |
| 49 |
46 48
|
anbi12i |
|- ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) <-> ( th /\ ta ) ) |
| 50 |
|
ovex |
|- ( y + 1 ) e. _V |
| 51 |
50 8
|
sbcie |
|- ( [. ( y + 1 ) / x ]. ph <-> et ) |
| 52 |
3 49 51
|
3imtr4g |
|- ( y e. NN -> ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) -> [. ( y + 1 ) / x ]. ph ) ) |
| 53 |
52
|
imp |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. ( y + 1 ) / x ]. ph ) |
| 54 |
44 53
|
jca |
|- ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) |
| 55 |
54
|
ex |
|- ( y e. NN -> ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) ) |
| 56 |
14 18 22 26 36 55
|
nnind |
|- ( ( A + 1 ) e. NN -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) |
| 57 |
10 56
|
syl |
|- ( A e. NN0 -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) |
| 58 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
| 59 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
| 60 |
58 39 59
|
sylancl |
|- ( A e. NN0 -> ( ( A + 1 ) - 1 ) = A ) |
| 61 |
60
|
sbceq1d |
|- ( A e. NN0 -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph <-> [. A / x ]. ph ) ) |
| 62 |
61
|
biimpa |
|- ( ( A e. NN0 /\ [. ( ( A + 1 ) - 1 ) / x ]. ph ) -> [. A / x ]. ph ) |
| 63 |
62
|
adantrr |
|- ( ( A e. NN0 /\ ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) -> [. A / x ]. ph ) |
| 64 |
57 63
|
mpdan |
|- ( A e. NN0 -> [. A / x ]. ph ) |
| 65 |
9
|
sbcieg |
|- ( A e. NN0 -> ( [. A / x ]. ph <-> rh ) ) |
| 66 |
64 65
|
mpbid |
|- ( A e. NN0 -> rh ) |