Metamath Proof Explorer


Theorem 2on

Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion 2on
|- 2o e. On

Proof

Step Hyp Ref Expression
1 df-2o
 |-  2o = suc 1o
2 1on
 |-  1o e. On
3 2 onsuci
 |-  suc 1o e. On
4 1 3 eqeltri
 |-  2o e. On