Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 2on0 | |- 2o =/= (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | |- 2o = suc 1o |
|
2 | nsuceq0 | |- suc 1o =/= (/) |
|
3 | 1 2 | eqnetri | |- 2o =/= (/) |