Metamath Proof Explorer


Theorem 2onn

Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 2onnALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 2onn
|- 2o e. _om

Proof

Step Hyp Ref Expression
1 2on
 |-  2o e. On
2 2ellim
 |-  ( Lim x -> 2o e. x )
3 2 ax-gen
 |-  A. x ( Lim x -> 2o e. x )
4 elom
 |-  ( 2o e. _om <-> ( 2o e. On /\ A. x ( Lim x -> 2o e. x ) ) )
5 1 3 4 mpbir2an
 |-  2o e. _om