Metamath Proof Explorer


Theorem 2oppcbas

Description: The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcbas.1
|- O = ( oppCat ` C )
2oppcco.2
|- B = ( Base ` C )
Assertion 2oppcbas
|- B = ( Base ` ( oppCat ` O ) )

Proof

Step Hyp Ref Expression
1 oppcbas.1
 |-  O = ( oppCat ` C )
2 2oppcco.2
 |-  B = ( Base ` C )
3 eqid
 |-  ( oppCat ` O ) = ( oppCat ` O )
4 1 2 oppcbas
 |-  B = ( Base ` O )
5 3 4 oppcbas
 |-  B = ( Base ` ( oppCat ` O ) )