Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
2 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
3 |
1 2
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
4 |
|
eqid |
|- ( comp ` O ) = ( comp ` O ) |
5 |
|
eqid |
|- ( oppCat ` O ) = ( oppCat ` O ) |
6 |
|
simpr1 |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
7 |
|
simpr2 |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
8 |
|
simpr3 |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> z e. ( Base ` C ) ) |
9 |
3 4 5 6 7 8
|
oppcco |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) = ( f ( <. z , y >. ( comp ` O ) x ) g ) ) |
10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
11 |
2 10 1 8 7 6
|
oppcco |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( f ( <. z , y >. ( comp ` O ) x ) g ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
12 |
9 11
|
eqtr2d |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) ) |
13 |
12
|
ralrimivw |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) ) |
14 |
13
|
ralrimivw |
|- ( ( T. /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) ) |
15 |
14
|
ralrimivvva |
|- ( T. -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) ) |
16 |
|
eqid |
|- ( comp ` ( oppCat ` O ) ) = ( comp ` ( oppCat ` O ) ) |
17 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
18 |
|
eqidd |
|- ( T. -> ( Base ` C ) = ( Base ` C ) ) |
19 |
1 2
|
2oppcbas |
|- ( Base ` C ) = ( Base ` ( oppCat ` O ) ) |
20 |
19
|
a1i |
|- ( T. -> ( Base ` C ) = ( Base ` ( oppCat ` O ) ) ) |
21 |
1
|
2oppchomf |
|- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
22 |
21
|
a1i |
|- ( T. -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
23 |
10 16 17 18 20 22
|
comfeq |
|- ( T. -> ( ( comf ` C ) = ( comf ` ( oppCat ` O ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( oppCat ` O ) ) z ) f ) ) ) |
24 |
15 23
|
mpbird |
|- ( T. -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
25 |
24
|
mptru |
|- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |