Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
2 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
4 |
2 3
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
5 |
|
fnrel |
|- ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) -> Rel ( Homf ` C ) ) |
6 |
4 5
|
ax-mp |
|- Rel ( Homf ` C ) |
7 |
|
relxp |
|- Rel ( ( Base ` C ) X. ( Base ` C ) ) |
8 |
4
|
fndmi |
|- dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) |
9 |
8
|
releqi |
|- ( Rel dom ( Homf ` C ) <-> Rel ( ( Base ` C ) X. ( Base ` C ) ) ) |
10 |
7 9
|
mpbir |
|- Rel dom ( Homf ` C ) |
11 |
|
tpostpos2 |
|- ( ( Rel ( Homf ` C ) /\ Rel dom ( Homf ` C ) ) -> tpos tpos ( Homf ` C ) = ( Homf ` C ) ) |
12 |
6 10 11
|
mp2an |
|- tpos tpos ( Homf ` C ) = ( Homf ` C ) |
13 |
|
eqid |
|- ( oppCat ` O ) = ( oppCat ` O ) |
14 |
1 2
|
oppchomf |
|- tpos ( Homf ` C ) = ( Homf ` O ) |
15 |
13 14
|
oppchomf |
|- tpos tpos ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
16 |
12 15
|
eqtr3i |
|- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |