Step |
Hyp |
Ref |
Expression |
1 |
|
2optocl.1 |
|- R = ( C X. D ) |
2 |
|
2optocl.2 |
|- ( <. x , y >. = A -> ( ph <-> ps ) ) |
3 |
|
2optocl.3 |
|- ( <. z , w >. = B -> ( ps <-> ch ) ) |
4 |
|
2optocl.4 |
|- ( ( ( x e. C /\ y e. D ) /\ ( z e. C /\ w e. D ) ) -> ph ) |
5 |
3
|
imbi2d |
|- ( <. z , w >. = B -> ( ( A e. R -> ps ) <-> ( A e. R -> ch ) ) ) |
6 |
2
|
imbi2d |
|- ( <. x , y >. = A -> ( ( ( z e. C /\ w e. D ) -> ph ) <-> ( ( z e. C /\ w e. D ) -> ps ) ) ) |
7 |
4
|
ex |
|- ( ( x e. C /\ y e. D ) -> ( ( z e. C /\ w e. D ) -> ph ) ) |
8 |
1 6 7
|
optocl |
|- ( A e. R -> ( ( z e. C /\ w e. D ) -> ps ) ) |
9 |
8
|
com12 |
|- ( ( z e. C /\ w e. D ) -> ( A e. R -> ps ) ) |
10 |
1 5 9
|
optocl |
|- ( B e. R -> ( A e. R -> ch ) ) |
11 |
10
|
impcom |
|- ( ( A e. R /\ B e. R ) -> ch ) |