| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> x = u ) |
| 2 |
|
simplr |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> y = v ) |
| 3 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ u / x ] [ v / y ] ph ) |
| 4 |
|
sbequ2 |
|- ( x = u -> ( [ u / x ] [ v / y ] ph -> [ v / y ] ph ) ) |
| 5 |
1 3 4
|
sylc |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ v / y ] ph ) |
| 6 |
|
sbequ2 |
|- ( y = v -> ( [ v / y ] ph -> ph ) ) |
| 7 |
2 5 6
|
sylc |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ph ) |
| 8 |
1 2 7
|
jca31 |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
| 9 |
|
simpll |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> x = u ) |
| 10 |
|
simplr |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> y = v ) |
| 11 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ph ) |
| 12 |
|
sbequ1 |
|- ( y = v -> ( ph -> [ v / y ] ph ) ) |
| 13 |
10 11 12
|
sylc |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> [ v / y ] ph ) |
| 14 |
|
sbequ1 |
|- ( x = u -> ( [ v / y ] ph -> [ u / x ] [ v / y ] ph ) ) |
| 15 |
9 13 14
|
sylc |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> [ u / x ] [ v / y ] ph ) |
| 16 |
9 10 15
|
jca31 |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
| 17 |
8 16
|
impbii |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |