Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ). |
2 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( x = u /\ y = v ) ) |
3 |
1 2
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( x = u /\ y = v ) ). |
4 |
|
simpl |
|- ( ( x = u /\ y = v ) -> x = u ) |
5 |
3 4
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. x = u ). |
6 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> [ u / x ] [ v / y ] ph ) |
7 |
1 6
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ u / x ] [ v / y ] ph ). |
8 |
|
pm3.21 |
|- ( x = u -> ( [ u / x ] [ v / y ] ph -> ( [ u / x ] [ v / y ] ph /\ x = u ) ) ) |
9 |
5 7 8
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ). |
10 |
|
sbequ2 |
|- ( x = u -> ( [ u / x ] [ v / y ] ph -> [ v / y ] ph ) ) |
11 |
10
|
imdistanri |
|- ( ( [ u / x ] [ v / y ] ph /\ x = u ) -> ( [ v / y ] ph /\ x = u ) ) |
12 |
9 11
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ x = u ) ). |
13 |
|
simpl |
|- ( ( [ v / y ] ph /\ x = u ) -> [ v / y ] ph ) |
14 |
12 13
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. [ v / y ] ph ). |
15 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
16 |
3 15
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. y = v ). |
17 |
|
pm3.2 |
|- ( [ v / y ] ph -> ( y = v -> ( [ v / y ] ph /\ y = v ) ) ) |
18 |
14 16 17
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( [ v / y ] ph /\ y = v ) ). |
19 |
|
sbequ2 |
|- ( y = v -> ( [ v / y ] ph -> ph ) ) |
20 |
19
|
imdistanri |
|- ( ( [ v / y ] ph /\ y = v ) -> ( ph /\ y = v ) ) |
21 |
18 20
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ph /\ y = v ) ). |
22 |
|
simpl |
|- ( ( ph /\ y = v ) -> ph ) |
23 |
21 22
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ph ). |
24 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( ph -> ( ( x = u /\ y = v ) /\ ph ) ) ) |
25 |
3 23 24
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ). |
26 |
25
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) -> ( ( x = u /\ y = v ) /\ ph ) ) |
27 |
|
idn1 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ ph ) ). |
28 |
|
simpl |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( x = u /\ y = v ) ) |
29 |
27 28
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( x = u /\ y = v ) ). |
30 |
29 4
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. x = u ). |
31 |
29 15
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. y = v ). |
32 |
|
simpr |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ph ) |
33 |
27 32
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ph ). |
34 |
|
pm3.21 |
|- ( y = v -> ( ph -> ( ph /\ y = v ) ) ) |
35 |
31 33 34
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ph /\ y = v ) ). |
36 |
|
sbequ1 |
|- ( y = v -> ( ph -> [ v / y ] ph ) ) |
37 |
36
|
imdistanri |
|- ( ( ph /\ y = v ) -> ( [ v / y ] ph /\ y = v ) ) |
38 |
35 37
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ y = v ) ). |
39 |
|
simpl |
|- ( ( [ v / y ] ph /\ y = v ) -> [ v / y ] ph ) |
40 |
38 39
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ v / y ] ph ). |
41 |
|
pm3.21 |
|- ( x = u -> ( [ v / y ] ph -> ( [ v / y ] ph /\ x = u ) ) ) |
42 |
30 40 41
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ v / y ] ph /\ x = u ) ). |
43 |
|
sbequ1 |
|- ( x = u -> ( [ v / y ] ph -> [ u / x ] [ v / y ] ph ) ) |
44 |
43
|
imdistanri |
|- ( ( [ v / y ] ph /\ x = u ) -> ( [ u / x ] [ v / y ] ph /\ x = u ) ) |
45 |
42 44
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( [ u / x ] [ v / y ] ph /\ x = u ) ). |
46 |
|
simpl |
|- ( ( [ u / x ] [ v / y ] ph /\ x = u ) -> [ u / x ] [ v / y ] ph ) |
47 |
45 46
|
e1a |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. [ u / x ] [ v / y ] ph ). |
48 |
|
pm3.2 |
|- ( ( x = u /\ y = v ) -> ( [ u / x ] [ v / y ] ph -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) ) |
49 |
29 47 48
|
e11 |
|- (. ( ( x = u /\ y = v ) /\ ph ) ->. ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ). |
50 |
49
|
in1 |
|- ( ( ( x = u /\ y = v ) /\ ph ) -> ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) ) |
51 |
26 50
|
impbii |
|- ( ( ( x = u /\ y = v ) /\ [ u / x ] [ v / y ] ph ) <-> ( ( x = u /\ y = v ) /\ ph ) ) |