| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sspmaplub.u | 
							 |-  U = ( lub ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							sspmaplub.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							sspmaplub.m | 
							 |-  M = ( pmap ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( _|_P ` K ) = ( _|_P ` K )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							2polvalN | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` S ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) = ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) )  | 
						
						
							| 8 | 
							
								2 4
							 | 
							polssatN | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` S ) C_ A )  | 
						
						
							| 9 | 
							
								2 4
							 | 
							3polN | 
							 |-  ( ( K e. HL /\ ( ( _|_P ` K ) ` S ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syldan | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtr3d | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							hlclat | 
							 |-  ( K e. HL -> K e. CLat )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 14 | 
							
								13 2
							 | 
							atssbase | 
							 |-  A C_ ( Base ` K )  | 
						
						
							| 15 | 
							
								
							 | 
							sstr | 
							 |-  ( ( S C_ A /\ A C_ ( Base ` K ) ) -> S C_ ( Base ` K ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpan2 | 
							 |-  ( S C_ A -> S C_ ( Base ` K ) )  | 
						
						
							| 17 | 
							
								13 1
							 | 
							clatlubcl | 
							 |-  ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( U ` S ) e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							syl2an | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( U ` S ) e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								13 2 3
							 | 
							pmapssat | 
							 |-  ( ( K e. HL /\ ( U ` S ) e. ( Base ` K ) ) -> ( M ` ( U ` S ) ) C_ A )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syldan | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` S ) ) C_ A )  | 
						
						
							| 21 | 
							
								1 2 3 4
							 | 
							2polvalN | 
							 |-  ( ( K e. HL /\ ( M ` ( U ` S ) ) C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syldan | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							eqtr3d | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` S ) ) = ( M ` ( U ` ( M ` ( U ` S ) ) ) ) )  | 
						
						
							| 24 | 
							
								23 5
							 | 
							eqtr3d | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( M ` ( U ` ( M ` ( U ` S ) ) ) ) = ( M ` ( U ` S ) ) )  |