Step |
Hyp |
Ref |
Expression |
1 |
|
2polat.a |
|- A = ( Atoms ` K ) |
2 |
|
2polat.p |
|- P = ( _|_P ` K ) |
3 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
5 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
6 |
4 1 5 2
|
polatN |
|- ( ( K e. OL /\ Q e. A ) -> ( P ` { Q } ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) |
7 |
3 6
|
sylan |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` { Q } ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) |
8 |
7
|
fveq2d |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( P ` { Q } ) ) = ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
9 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
12 |
10 4
|
opoccl |
|- ( ( K e. OP /\ Q e. ( Base ` K ) ) -> ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) |
13 |
9 11 12
|
syl2an |
|- ( ( K e. HL /\ Q e. A ) -> ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) |
14 |
10 4 5 2
|
polpmapN |
|- ( ( K e. HL /\ ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
15 |
13 14
|
syldan |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
16 |
10 4
|
opococ |
|- ( ( K e. OP /\ Q e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) = Q ) |
17 |
9 11 16
|
syl2an |
|- ( ( K e. HL /\ Q e. A ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) = Q ) |
18 |
17
|
fveq2d |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` Q ) ) |
19 |
1 5
|
pmapat |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } ) |
20 |
18 19
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) = { Q } ) |
21 |
15 20
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = { Q } ) |
22 |
8 21
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( P ` { Q } ) ) = { Q } ) |