| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2polat.a |
|- A = ( Atoms ` K ) |
| 2 |
|
2polat.p |
|- P = ( _|_P ` K ) |
| 3 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 5 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 6 |
4 1 5 2
|
polatN |
|- ( ( K e. OL /\ Q e. A ) -> ( P ` { Q } ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) |
| 7 |
3 6
|
sylan |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` { Q } ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) |
| 8 |
7
|
fveq2d |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( P ` { Q } ) ) = ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
| 9 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 12 |
10 4
|
opoccl |
|- ( ( K e. OP /\ Q e. ( Base ` K ) ) -> ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) |
| 13 |
9 11 12
|
syl2an |
|- ( ( K e. HL /\ Q e. A ) -> ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) |
| 14 |
10 4 5 2
|
polpmapN |
|- ( ( K e. HL /\ ( ( oc ` K ) ` Q ) e. ( Base ` K ) ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
| 15 |
13 14
|
syldan |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) ) |
| 16 |
10 4
|
opococ |
|- ( ( K e. OP /\ Q e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) = Q ) |
| 17 |
9 11 16
|
syl2an |
|- ( ( K e. HL /\ Q e. A ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) = Q ) |
| 18 |
17
|
fveq2d |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) = ( ( pmap ` K ) ` Q ) ) |
| 19 |
1 5
|
pmapat |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } ) |
| 20 |
18 19
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( oc ` K ) ` Q ) ) ) = { Q } ) |
| 21 |
15 20
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( ( pmap ` K ) ` ( ( oc ` K ) ` Q ) ) ) = { Q } ) |
| 22 |
8 21
|
eqtrd |
|- ( ( K e. HL /\ Q e. A ) -> ( P ` ( P ` { Q } ) ) = { Q } ) |