Step |
Hyp |
Ref |
Expression |
1 |
|
2polpmap.b |
|- B = ( Base ` K ) |
2 |
|
2polpmap.m |
|- M = ( pmap ` K ) |
3 |
|
2polpmap.p |
|- ._|_ = ( _|_P ` K ) |
4 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
5 |
1 4 2 3
|
polpmapN |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( M ` X ) ) = ( M ` ( ( oc ` K ) ` X ) ) ) |
6 |
5
|
fveq2d |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( ._|_ ` ( M ` X ) ) ) = ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) ) |
7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
8 |
1 4
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
9 |
7 8
|
sylan |
|- ( ( K e. HL /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
10 |
1 4 2 3
|
polpmapN |
|- ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. B ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
11 |
9 10
|
syldan |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` X ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
12 |
1 4
|
opococ |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
13 |
7 12
|
sylan |
|- ( ( K e. HL /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
14 |
13
|
fveq2d |
|- ( ( K e. HL /\ X e. B ) -> ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) = ( M ` X ) ) |
15 |
6 11 14
|
3eqtrd |
|- ( ( K e. HL /\ X e. B ) -> ( ._|_ ` ( ._|_ ` ( M ` X ) ) ) = ( M ` X ) ) |