Metamath Proof Explorer


Theorem 2polvalN

Description: Value of double polarity. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polval.u
|- U = ( lub ` K )
2polval.a
|- A = ( Atoms ` K )
2polval.m
|- M = ( pmap ` K )
2polval.p
|- ._|_ = ( _|_P ` K )
Assertion 2polvalN
|- ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( M ` ( U ` X ) ) )

Proof

Step Hyp Ref Expression
1 2polval.u
 |-  U = ( lub ` K )
2 2polval.a
 |-  A = ( Atoms ` K )
3 2polval.m
 |-  M = ( pmap ` K )
4 2polval.p
 |-  ._|_ = ( _|_P ` K )
5 eqid
 |-  ( oc ` K ) = ( oc ` K )
6 1 5 2 3 4 polval2N
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) = ( M ` ( ( oc ` K ) ` ( U ` X ) ) ) )
7 6 fveq2d
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( ._|_ ` ( M ` ( ( oc ` K ) ` ( U ` X ) ) ) ) )
8 hlop
 |-  ( K e. HL -> K e. OP )
9 8 adantr
 |-  ( ( K e. HL /\ X C_ A ) -> K e. OP )
10 hlclat
 |-  ( K e. HL -> K e. CLat )
11 eqid
 |-  ( Base ` K ) = ( Base ` K )
12 11 2 atssbase
 |-  A C_ ( Base ` K )
13 sstr
 |-  ( ( X C_ A /\ A C_ ( Base ` K ) ) -> X C_ ( Base ` K ) )
14 12 13 mpan2
 |-  ( X C_ A -> X C_ ( Base ` K ) )
15 11 1 clatlubcl
 |-  ( ( K e. CLat /\ X C_ ( Base ` K ) ) -> ( U ` X ) e. ( Base ` K ) )
16 10 14 15 syl2an
 |-  ( ( K e. HL /\ X C_ A ) -> ( U ` X ) e. ( Base ` K ) )
17 11 5 opoccl
 |-  ( ( K e. OP /\ ( U ` X ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( U ` X ) ) e. ( Base ` K ) )
18 9 16 17 syl2anc
 |-  ( ( K e. HL /\ X C_ A ) -> ( ( oc ` K ) ` ( U ` X ) ) e. ( Base ` K ) )
19 11 5 3 4 polpmapN
 |-  ( ( K e. HL /\ ( ( oc ` K ) ` ( U ` X ) ) e. ( Base ` K ) ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` ( U ` X ) ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( U ` X ) ) ) ) )
20 18 19 syldan
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` ( M ` ( ( oc ` K ) ` ( U ` X ) ) ) ) = ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( U ` X ) ) ) ) )
21 11 5 opococ
 |-  ( ( K e. OP /\ ( U ` X ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( U ` X ) ) ) = ( U ` X ) )
22 9 16 21 syl2anc
 |-  ( ( K e. HL /\ X C_ A ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` ( U ` X ) ) ) = ( U ` X ) )
23 22 fveq2d
 |-  ( ( K e. HL /\ X C_ A ) -> ( M ` ( ( oc ` K ) ` ( ( oc ` K ) ` ( U ` X ) ) ) ) = ( M ` ( U ` X ) ) )
24 7 20 23 3eqtrd
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` ( ._|_ ` X ) ) = ( M ` ( U ` X ) ) )